Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
基本信息
- 批准号:7739678
- 负责人:
- 金额:$ 22.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsBiocompatible MaterialsBovine Serum AlbuminCoumarinsDrug Delivery SystemsDrug FormulationsDrug StabilityEncapsulatedEvaluationExhibitsFigs - dietaryGlycolatesGoalsHealedHeatingHindlimbHydration statusIn VitroIncubatedInjectableLabelLeuprolideLeuprolide AcetateMethodologyMethodsMicroencapsulationsMicrospheresModelingMolecular ConformationMusNanosphereOrganic solvent productPeptidesPerformancePharmaceutical PreparationsPhysiologicalPolymersPreparationProcessProteinsRattusResearchResearch PersonnelRouteScientistSolutionsSolventsStentsSwellingSystemTemperatureTestingTestosteroneTherapeuticTissue EngineeringVaccine AntigenVascular Endothelial Growth FactorsWateralpha benzopyroneaqueousbasebiodegradable polymerbiomaterial preparationclinically relevantcontrolled releaseevaporationhealingin vivointerestinterfacialnovelpoint of carepreventpublic health relevancescaffoldseal
项目摘要
DESCRIPTION (provided by applicant): Our ultimate goal is to develop a new and simple method to microencapsulate drugs and other bioactive substances, particularly biomacromolecules such as proteins and peptides, in biodegradable controlled-release polymers. Current methods of microencapsulation in polymers such as poly(lactic-co-glycolic acid) (PLGA) suffer from: a) protein instability including use of protein-denaturing organic solvents, b) expensive large-scale, aseptic processing for encapsulation of each peptide/protein of interest, and c) the inability of clinicians at the point-of-care or other non formulation scientists in the field to effectively perform encapsulation. We will exploit our novel finding of spontaneous PLGA pore closing to microencapsulate proteins and peptides by: creating polymer delivery systems with defined pore networks, placing the polymers in the presence of an aqueous drug solution of interest, and then causing the pore network to close, e.g., by simple heating to physiological temperature. Unlike the vast majority of microencapsulation methodologies, which place drug in contact with dissolved polymer before or during microencapsulation, this approach creates a new paradigm in microencapsulation, whereby the biomaterial system is initially created and then microencapsulation is performed at the very end of preparation. In a sense, the polymer pore network microencapsulates by "itself" spontaneously-hence the term, "self-microencapsulation." Moreover, microencapsulation a) takes place under nondenaturing conditions without the need for organic solvent, b) could be done inexpensively with terminally sterilized porous PLGA microspheres for multiple peptides and/or proteins, c) would be applicable to numerous polymer configurations and geometries such as microspheres, nanospheres, tissue engineering scaffolds, drug-eluting stents, and d) could be performed by clinicians and investigators in the field, since encapsulation is by simple aseptic mixing of protein and polymer. This proposal will test the hypothesis that PLGA microspheres entrapping high loading of protein or peptide drugs can be prepared reproducibly by self-microencapsulation, and the resulting polymer will exhibit excellent drug stability and release performance both in vitro and in vivo. This hypothesis will be tested in 3 specific aims: 1) determine the effect of formulation variables on self- microencapsulation of model proteins, 2) investigate the mechanism of spontaneous pore closing in aqueous media, and 3) test the feasibility of self-encapsulation to stabilize and control the release of therapeutic peptides and proteins in vitro and in vivo.
PUBLIC HEALTH RELEVANCE: This project tests the feasibility of a brand new method of microencapsulation based on a recent finding from our group demonstrating how biodegradable polymers can heal their tiny holes and cracks spontaneously in water. The microencapsulation method does not use organic solvents and could have far reaching applications to the slow delivery of the important biomacromolecular class of drugs and vaccine antigens from injectable depots, tissue engineering scaffolds, and drug-eluting stents.
描述(申请人提供):我们的最终目标是开发一种新的、简单的方法,将药物和其他生物活性物质,特别是生物大分子,如蛋白质和肽,微胶囊化在可生物降解的控释聚合物中。目前在聚乳酸-乙醇酸 (PLGA) 等聚合物中进行微囊化的方法存在以下问题:a) 蛋白质不稳定性,包括使用蛋白质变性有机溶剂;b) 封装每种肽需要昂贵的大规模无菌加工/感兴趣的蛋白质,以及c)现场护理的临床医生或该领域的其他非制剂科学家无法有效地进行封装。我们将通过以下方式利用我们的新发现:自发 PLGA 孔闭合微囊化蛋白质和肽:创建具有限定孔网络的聚合物递送系统,将聚合物置于感兴趣的药物水溶液存在下,然后使孔网络闭合,例如,通过简单加热至生理温度。与绝大多数微胶囊化方法(在微胶囊化之前或微胶囊化过程中将药物与溶解的聚合物接触)不同,这种方法创造了微胶囊化的新范例,首先创建生物材料系统,然后在制备的最后阶段进行微胶囊化。从某种意义上说,聚合物孔网络通过“自身”自发地微囊化——因此术语“自微囊化”。此外,微囊化 a) 在非变性条件下进行,无需有机溶剂,b) 可以使用最终灭菌的多孔 PLGA 微球廉价地完成多种肽和/或蛋白质,c) 将适用于多种聚合物构型和几何形状,例如微球、纳米球、组织工程支架、药物洗脱支架和 d) 可以由临床医生和该领域的研究人员进行,因为封装是通过简单的无菌混合蛋白质和聚合物。该提案将测试这样的假设:包埋高负载蛋白质或肽药物的 PLGA 微球可以通过自微胶囊化重复制备,所得聚合物将在体外和体内表现出优异的药物稳定性和释放性能。该假设将在 3 个具体目标中进行测试:1)确定配方变量对模型蛋白自微囊化的影响,2)研究水介质中自发孔闭合的机制,以及 3)测试自囊化的可行性在体外和体内稳定和控制治疗性肽和蛋白质的释放。
公共健康相关性:该项目测试了一种全新微胶囊化方法的可行性,该方法基于我们小组最近的一项发现,展示了可生物降解聚合物如何在水中自发修复其小孔和裂缝。微囊化方法不使用有机溶剂,对于从注射剂、组织工程支架和药物洗脱支架中缓慢输送重要的生物大分子药物和疫苗抗原具有深远的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN P. SCHWENDEMAN其他文献
STEVEN P. SCHWENDEMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN P. SCHWENDEMAN', 18)}}的其他基金
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10186743 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10590662 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10377507 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photo-Release of Nitric Oxide for Antimicrobial Inhalation Therapy
用于抗菌吸入疗法的一氧化氮的受控光释放
- 批准号:
9298198 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别:
Investigation of peptide-polymer interactions in PLGA microspheres
PLGA 微球中肽-聚合物相互作用的研究
- 批准号:
9346576 - 财政年份:2016
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
8670377 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
9131455 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
- 批准号:
7894812 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
7844194 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
6759671 - 财政年份:2001
- 资助金额:
$ 22.72万 - 项目类别:
相似国自然基金
基于温敏磁性水凝胶材料对循环肿瘤细胞的保存及机制研究
- 批准号:21908160
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于微流控芯片的镁合金降解与血管内皮重建交互作用的研究
- 批准号:51901137
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
骨折修复用多孔铌钽钛生物材料的有机模板法制备及表面微环境构建
- 批准号:51904357
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
骨基质仿生矿化体系的优化设计和切应力介导的纤维内分层矿化研究
- 批准号:11872097
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
多层聚电解质距离调控的金纳米棒等离基元增强稀土荧光的生物材料构建及其诊疗一体化研究
- 批准号:51801001
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10623684 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10203795 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
9982765 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Particulate-based in vivo modulation for immunotherapy of Rheumatoid Arthritis
基于颗粒的体内调节用于类风湿性关节炎的免疫治疗
- 批准号:
10676258 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Fluorescence-based molecular imaging of in vivo release kinetics
基于荧光的体内释放动力学分子成像
- 批准号:
9429542 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别: