Editing to Create and Correct Gene Variants

编辑以创建和纠正基因变异

基本信息

项目摘要

Mutations in over 350 genes have been implicated as drivers of primary immunodeficiency (PID), but the genes that are mutated to cause many of these rare, but clinically serious conditions remain unknown, even despite whole exome sequencing. The use of whole genome sequencing promises to reveal coding and non-coding mutations for cases of T lymphocyte deficiency that cannot be solved by whole exome sequencing. However, confidently distinguishing pathogenic PID mutations from the exceedingly large number of benign variants across the entire genome is daunting, due to the rare incidence of each PID, incomplete knowledge of the genes required for T cell development, and our lack sequence-based rules to predict which non-coding variants may be pathogenic. CRISPR-Cas9 genome editing combined with our in vitro T cell differentiation platform offers unprecedented opportunities to test directly how human genetic sequences control immune cell development from hematopoietic stem progenitor cells (HSPCs) and ultimately to arrive at new therapies consisting of rewriting mutations that cause human immune diseases in patient blood-forming cells. Progress in pinpointing each patient’s causal mutation will open the next frontier: precise non-viral correction of endogenous disease-causing mutations for autologous gene therapy in HSPCs, avoiding the necessity to use imperfectly matched allogeneic donor transplants, for which graft rejection and graft vs. host disease are potentially devastating complications. This project will develop high-efficiency, high-throughput CRISPR-based technologies for identification of essential genes T for cell development, rapid functional testing of candidate mutations, and therapeutic genetic correction of a patient’s own HSPCs. We have developed CRISPR-Cas9 as a molecular scalpel to edit specific genome sequences in primary human cells and recently improved this technology for therapeutically-relevant editing in HPSCs. We will further apply CRISPR-based technologies for high-throughput mapping of coding and non-coding mutations in genes related to SCID and other forms of T-cell deficient PID, and we will develop new technologies for therapeutic gene editing in primary human HSPCs. Thus this project’s three central aims address fundamental challenges to achieving cures for PID through gene editing: 1) Discovery of all gene perturbations that could result in T cell deficiency, 2) Rapid identification of causal mutations for PID cases with unsolved genetic basis, and 3) Improvement in technology to introduce efficient and specific gene corrections into primary HPSCs as a forerunner to personalized autologous gene correction to restore immune function.
超过 350 个基因的突变被认为是原发性免疫缺陷 (PID) 的驱动因素,但这些基因 突变导致许多这些罕见但临床严重的疾病仍然未知,尽管 全外显子组测序的使用有望揭示编码和非编码。 然而,无法通过全外显子组测序解决 T 淋巴细胞缺陷病例的突变。 自信地将致病性 PID 突变与大量良性变异区分开来 整个基因组令人望而生畏,由于每种 PID 的发病率都很罕见,而且对基因的了解不完整 T 细胞发育所需的,并且我们缺乏基于序列的规则来预测哪些非编码变体可能 CRISPR-Cas9 基因组编辑与我们的体外 T 细胞分化平台相结合。 直接测试人类基因序列如何控制免疫细胞发育的前所未有的机会 从造血干祖细胞(HSPC)中提取,并最终获得包括重写在内的新疗法 在患者造血细胞中引起人类免疫疾病的突变在精确定位每种突变方面取得了进展。 患者的因果突变将开辟下一个前沿:内源性疾病的精确非病毒校正 HSPC 中自体基因治疗的突变,避免使用不完全匹配的同种异体的必要性 供体移植,移植物排斥和移植物抗宿主病是潜在的破坏性并发症。 该项目将开发基于 CRISPR 的高效、高通量技术,用于鉴定 细胞发育的必需基因 T、候选突变的快速功能测试以及治疗性遗传 我们开发了 CRISPR-Cas9 作为分子手术刀来编辑特定的 HSPC。 原代人类细胞中的基因组序列,最近改进了该技术以用于治疗相关 我们将进一步应用基于 CRISPR 的技术进行编码和高通量作图。 与 SCID 和其他形式的 T 细胞缺陷 PID 相关的基因中的非编码突变,我们将开发新的 因此,该项目的三个中心目标是在原代人类 HSPC 中进行治疗性基因编辑。 通过基因编辑解决 PID 治疗的基本挑战:1) 发现所有基因 可能导致 T 细胞缺陷的干扰,2) 快速识别 PID 病例的因果突变 未解决的遗传基础,以及3)改进技术以引入有效和特定的基因校正 进入原代 HPSC,作为个性化自体基因校正的先驱,以恢复免疫功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Marson其他文献

Alexander Marson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Marson', 18)}}的其他基金

Decoding and reprogramming T cells through synthetic biology for cancer immunotherapy
通过合成生物学解码和重编程 T 细胞用于癌症免疫治疗
  • 批准号:
    10568704
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
Project 3
项目3
  • 批准号:
    10506989
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Core B: Human Genetics and Genomics Core
核心 B:人类遗传学和基因组学核心
  • 批准号:
    10576380
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Project 3: CRISPR Genome Editing to Understand and Correct STAT3 GOF Immune Dysregulation
项目 3:通过 CRISPR 基因组编辑了解和纠正 STAT3 GOF 免疫失调
  • 批准号:
    10576392
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Project 3: CRISPR Genome Editing to Understand and Correct STAT3 GOF Immune Dysregulation
项目 3:通过 CRISPR 基因组编辑了解和纠正 STAT3 GOF 免疫失调
  • 批准号:
    10328103
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Project 3
项目3
  • 批准号:
    10666677
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Core B: Human Genetics and Genomics Core
核心 B:人类遗传学和基因组学核心
  • 批准号:
    10328100
  • 财政年份:
    2022
  • 资助金额:
    $ 41.98万
  • 项目类别:
Functional Molecular Investigation of Inflammatory Bowel Disease (IBD) Risk Variants
炎症性肠病 (IBD) 风险变异的功能分子研究
  • 批准号:
    10374675
  • 财政年份:
    2021
  • 资助金额:
    $ 41.98万
  • 项目类别:
Editing to Create and Correct Gene Variants
编辑以创建和纠正基因变异
  • 批准号:
    10462633
  • 财政年份:
    2020
  • 资助金额:
    $ 41.98万
  • 项目类别:
Inherited T cell defects: Diagnosis, Mechanisms and Treatments
遗传性 T 细胞缺陷:诊断、机制和治疗
  • 批准号:
    10728891
  • 财政年份:
    2020
  • 资助金额:
    $ 41.98万
  • 项目类别:

相似国自然基金

抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
  • 批准号:
    82270210
  • 批准年份:
    2022
  • 资助金额:
    68 万元
  • 项目类别:
    面上项目
过表达MicroRNA-199a-3p的BMSCs来源的外泌体抑制小鼠DC功能诱导同种异体心脏移植免疫耐受的机制研究
  • 批准号:
    82160081
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
胸腺上皮细胞在小鼠后肢同种异体复合组织移植中的免疫调节作用及相关机制研究
  • 批准号:
    82102354
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有靶向识别和序贯治疗功能的纳米微球对血管化同种异体复合组织移植术后免疫抑制的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于T细胞亚群分化与TLR2/TRAF6信号通路探讨ESAT-6抑制同种异体移植排斥的分子免疫机制
  • 批准号:
    82071800
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
  • 批准号:
    10698759
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
Targeting Dystroglycanopathies using Pluripotent-derived Myogenic Progenitors
使用多能源性肌源性祖细胞靶向肌营养不良症
  • 批准号:
    10561375
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
  • 批准号:
    10720685
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
Functionally Closed Purification and Elution of Untouched Cells using Cleavable Magnetic Beads with Digital Magnetic Sorting
使用可裂解磁珠和数字磁分选对未接触的细胞进行功能封闭纯化和洗脱
  • 批准号:
    10603997
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
Particle-Assisted Control over Macrophage-Neutrophil interactions (Pac-Man)
巨噬细胞-中性粒细胞相互作用的粒子辅助控制(吃豆人)
  • 批准号:
    10725989
  • 财政年份:
    2023
  • 资助金额:
    $ 41.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了