Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
基本信息
- 批准号:10246527
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAllograftingAntibodiesArchivesAreaBenignBiological MarkersBiopsyBiopsy SpecimenCardiacCellsClassificationClinicalClinical Trials DesignComplicationComputer AssistedComputer Vision SystemsCustomDataDerivation procedureDevelopmentDiagnosisDiagnosticDisabled PersonsDiseaseEvaluationEventFlow CytometryFunctional disorderGene Expression ProfilingGraft RejectionGuidelinesHeartHeart TransplantationHeart-Lung TransplantationHistologicHistopathologic GradeHistopathologyHumanImageImage AnalysisImmuneImmune System DiseasesImmunofluorescence ImmunologicImmunologic MarkersImmunologicsIn SituInjuryInternationalInterobserver VariabilityInterventionJournalsLegal patentLymphocyteMachine LearningMalignant neoplasm of lungMediatingMedicalMethodsMolecularMonitorMorphologyOrgan TransplantationOutcomePaperPathologistPatient-Focused OutcomesPatientsPatternPerformancePopulationPreventionPrognosisProspective cohortProtocols documentationROC CurveRecurrenceReference StandardsResearchRetrospective cohortRiskSamplingSchemeServicesSeveritiesSlideSocietiesStainsSyndromeTechnologyTestingTherapeuticTissue imagingTissuesTrainingTransplant RecipientsTransplantationallograft rejectionantibody-mediated rejectionbasebiomarker discoverybiomarker validationclinical predictorsclinically significantcohortdiagnostic accuracyfeature detectiongraft failureheart allograftheart imagingimprovedinnovationmolecular markernovelovertreatmentpathology imagingphenotypic datapopulation basedpost-transplantprospectivescreeningsuccesstooltransplant centerstreatment as usualtreatment choice
项目摘要
Project Summary
Though cardiac transplantation is a lifesaving intervention, cardiac allograft rejection (CAR) remains a relatively
common and serious complication that confers an increased risk of acute graft failure and adverse patient
outcomes. For three decades, endomyocardial biopsy (EMB) with histological grading, as recommended by the
International Society of Heart and Lung Transplantation (ISHLT) has been the broadly applied standard for CAR
diagnosis. However, it is widely appreciated that the ISHLT rejection grading standard lacks diagnostic accuracy
and has limited ability to discern the mechanism of rejection. These limitations expose patients to risks of both
over-treatment and under-treatment, and highlight the unmet need for more accurate and informative
approaches to histopathologic analysis of EMB samples. Our team is a leader in computational pathology image
analysis with over 200 papers and >30 issued patents in this area. We have already developed and evaluated a
computer assisted histopathology grading evaluation (CACHE) scheme which (1) in N=205 patients, had an area
under the receiver operating characteristic curve (AUC)=0.95 compared to two cardiac pathologists (mean
AUC=0.74) in distinguishing normal from failing hearts and (2) could distinguish low and high ISHLT rejection
grades in N=1109 patients with a performance that exceeds that of trained cardiac pathologists. Recognizing the
frequent discordance between ISHLT rejection grade and the clinical trajectory of a rejection event, we will further
develop and optimize CACHE to identify new “grade agnostic” morphologic biomarkers of clinically serious CAR.
Our scientific premise is that morphologic biomarkers prioritized based on their correlation to patients’ clinical
trajectories and underlying immunological disease mechanisms will generate an accurate, consistent and
informative classifier for diagnosing allograft rejection. In service of this hypothesis, the proposed research will
address three specific aims. In Aim 1, we will utilize computational image analysis to discover the morphologic
biomarkers of rejection-related injury which are needed to develop a classifier capable of assessing the clinical
trajectory of CAR. In Aim 2, we will provide mechanistic annotation of biomarkers identified in Aim 1 through
correlation with in-situ immunologic markers using custom multi-parameter immunofluorescence panels. In Aim
3, we employ a multicenter, prospective cohort to validate the diagnostic and mechanistic accuracy of the new
rejection classifier developed in Aims 1 and 2. Ultimately, development of a more accurate and mechanistically
informative tool for morphologic diagnosis of CAR will improve patient outcomes by reducing over- and under-
treatment and inspire applications in other organ transplants. Interestingly, development of a superior histologic
diagnostic tool will empower development of alternative, biopsy-free diagnostic approaches that have been
handicapped by the necessity of comparison with the flawed ISHLT rejection grade as a reference standard.
项目概要
尽管心脏移植是一种挽救生命的干预措施,但心脏同种异体移植排斥(CAR)仍然是一种相对
常见且严重的并发症,会增加急性移植失败和不良患者的风险
三十年来,按照组织学分级的建议进行心内膜心肌活检(EMB)。
国际心肺移植学会 (ISHLT) 已成为广泛应用的 CAR 标准
然而,人们普遍认为 ISHLT 排斥分级标准缺乏诊断准确性。
并且辨别排斥机制的能力有限,这些限制使患者面临两种风险。
过度治疗和治疗不足,并强调对更准确和信息更丰富的需求尚未得到满足
我们的团队是计算病理学图像领域的领导者。
我们已经开发并评估了该领域的 200 多篇论文和超过 30 项已发布的专利。
计算机辅助组织病理学分级评估 (CACHE) 方案 (1) 在 N=205 名患者中,有一个面积
与两位心脏病病理学家相比,受试者工作特征曲线 (AUC)=0.95(平均
AUC=0.74) 可以区分正常心脏和衰竭心脏,并且 (2) 可以区分低和高 ISHLT 排斥反应
N=1109 名患者的评分超过了受过训练的心脏病病理学家的评分。
ISHLT 排斥等级与排斥事件的临床轨迹之间经常存在不一致,我们将进一步
开发和优化 CACHE,以识别临床严重 CAR 的新“级别不可知”形态生物标志物。
我们的科学前提是,形态学生物标志物根据其与患者临床症状的相关性进行优先排序
轨迹和潜在的免疫疾病机制将产生准确、一致和
用于诊断同种异体移植排斥反应的信息分类器 为了支持这一假设,拟议的研究将
在目标 1 中,我们将利用计算图像分析来发现形态学。
排斥相关损伤的生物标志物,需要开发能够评估临床的分类器
在目标 2 中,我们将通过目标 1 提供生物标志物的机制注释。
使用定制多参数免疫荧光面板与原位免疫标记物进行关联。
3,我们采用多中心前瞻性队列来验证新方法的诊断和机械准确性
目标 1 和目标 2 中开发的拒绝分类器。最终,开发出更准确、更机械的分类器
CAR 形态学诊断的信息工具将通过减少过度和不足来改善患者的治疗结果
治疗并激发其他器官移植的应用。
诊断工具将有助于开发替代的、免活检的诊断方法
由于必须与调味 ISHLT 剔除等级作为参考标准进行比较,因此存在缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anant Madabhushi其他文献
Anant Madabhushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anant Madabhushi', 18)}}的其他基金
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10416206 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10589239 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10698122 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10703255 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10699497 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10478916 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10687842 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10084629 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10471279 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10267200 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Genetics and Immune Predictors for Recurrent Glomerular Diseases in the Kidney Allograft
同种异体移植肾中复发性肾小球疾病的遗传学和免疫预测因子
- 批准号:
10637158 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Mitigating the Effects of Structural Racism on Chronic Kidney Disease Disparities among African Americans
减轻结构性种族主义对非裔美国人慢性肾病差异的影响
- 批准号:
10742680 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Leveraging a novel health records platform to predict the development of cardiovascular disease following kidney transplantation
利用新型健康记录平台预测肾移植后心血管疾病的发展
- 批准号:
10679322 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Novel Approaches to Inducing Lung Allograft Tolerance in NHPs
诱导 NHP 肺同种异体移植耐受的新方法
- 批准号:
10622123 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别: