T Cell Receptor Forces: From Molecular Mapping to Cancer Therapeutic Triggering
T 细胞受体力:从分子图谱到癌症治疗触发
基本信息
- 批准号:10247093
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
T cells migrate through tissues, scanning cell surfaces and selectively destroying infected or
malignant cells. The T cell interacts with other cells through the T cell receptor (TCR),
recognizing antigen peptide fragment bound to the major histocompatibility complex (pMHC), on
target cells. The TCR-pMHC bond is extremely specific, recognizing a single target pMHC
among a myriad of other antigens. Despite the extreme importance of the TCR-pMHC bond to
cancer prevention and immune surveillance, the origin of TCR specificity remains unclear.
There is indirect evidence that TCR recognition of antigen utilizes uses mechanical force,
specifically piconewton forces parallel the T cell membrane, to differentiate foreign antigen from
self-antigen. Additionally, only one or two TCR-pMHC molecular bonds may be sufficient to
trigger T cell activation, but tools to map pN mechanical events and to measure the orientation
of these forces of do not exist, hindering progress in understanding T cell mechanobiology.
My PhD research focuses on developing tools for molecular mechanobiology. I have
invented a technique, Molecular Force Microscopy, capable of mapping the 3D orientation of
piconewton molecular forces. I have also invented tension-PAINT, a super-resolved imaging
technique capable of mapping single molecule cellular forces with ~10 nm spatial resolution. My
F99 research has two focuses. First, I will apply Molecular Force Microscopy in conjunction with
biochemical markers of T cell activation (e.g. Zap70-EGFP and calcium signaling) to test the
hypothesis that TCR prefers forces parallel to the cell membrane to activate in response to
antigen. Second, I will apply tension-PAINT to T cell forces to test the hypothesis that molecular
forces recruit co-receptors in a force-dependent manner during T cell activation. This research
will provide vital mechanistic details about force-mediated T cell activation.
For my postdoctoral (K00) work, I will transition to developing immunotherapuetics.
Immunotherapies, including engineered immune cells and PD-L1 blocking antibodies, have
been deployed as anti-tumor therapies. However, immunotherapy is ineffective in many
cancers. I hypothesize that TCR forces at the T cell-tumor junction can be leveraged to create
new, force-activated immunotherapeutics. I will create a DNA-based container which I have
termed the DNA origami antigen (DOA). The DOA will bind to tumor cells via cancer-specific
antibodies. T cell forces will open the container, revealing a highly immunogenic payload that
will stimulate cytotoxic T cell killing of cancer therapeutic. This research will result in a novel
class of molecular force activated immunotherapeutics to combat cancer.
T细胞通过组织迁移,扫描细胞表面并有选择地破坏感染或
恶性细胞。 T细胞通过T细胞受体(TCR)与其他细胞相互作用,
识别与主要组织相容性复合物(PMHC)结合的抗原肽片段,
靶细胞。 TCR-PMHC键非常具体,识别单个目标PMHC
在无数其他抗原中。尽管TCR-PMHC键对
预防癌症和免疫监测,TCR特异性的起源尚不清楚。
有间接的证据表明,TCR识别抗原利用使用机械力,
特异性的piconewton力平行于T细胞膜,以区分外抗原与
自我抗原。此外,只有一个或两个TCR-PMHC分子键可能足以
触发T细胞激活,但要绘制PN机械事件并测量方向的工具
这些不存在的力,阻碍了理解T细胞机械生物学的进展。
我的博士研究重点是开发用于分子机械生物学的工具。我有
发明了一种技术,即分子力显微镜,能够映射3D方向
Piconewton分子力。我还发明了张力粉末,这是一种超级分辨的成像
能够用〜10 nm空间分辨率映射单分子细胞力的技术。我的
F99研究有两个重点。首先,我将在
T细胞激活的生化标记(例如ZAP70-EGFP和钙信号传导)测试
假设TCR更喜欢平行于细胞膜的力来激活
抗原。其次,我将向T细胞力施加张力粉,以测试分子的假设
在T细胞激活期间,迫使募集的共受体。这项研究
将提供有关力介导的T细胞激活的重要机理细节。
对于我的博士后(K00)工作,我将过渡到开发免疫疗法。
免疫疗法,包括工程的免疫细胞和PD-L1阻断抗体,具有
被部署为抗肿瘤疗法。但是,免疫疗法在许多人中无效
癌症。我假设可以利用T细胞脉冲连接处的TCR力来创建
新的,力激活的免疫治疗药。我将创建一个基于DNA的容器
称为DNA折纸抗原(DOA)。 DOA将通过癌症特异性与肿瘤细胞结合
抗体。 T细胞力将打开容器,揭示高度免疫原性有效载荷
会刺激癌症治疗的细胞毒性T细胞杀死。这项研究将导致小说
分子力类型激活免疫疗法以对抗癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Joshua Mark Brockm...的其他基金
T Cell Receptor Forces: From Molecular Mapping to Cancer Therapeutic Triggering
T 细胞受体力:从分子图谱到癌症治疗触发
- 批准号:1045701510457015
- 财政年份:2020
- 资助金额:$ 8.96万$ 8.96万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:1064421110644211
- 财政年份:2023
- 资助金额:$ 8.96万$ 8.96万
- 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:1072488210724882
- 财政年份:2023
- 资助金额:$ 8.96万$ 8.96万
- 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:1064591910645919
- 财政年份:2023
- 资助金额:$ 8.96万$ 8.96万
- 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
- 批准号:1076649310766493
- 财政年份:2023
- 资助金额:$ 8.96万$ 8.96万
- 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
- 批准号:1064475910644759
- 财政年份:2023
- 资助金额:$ 8.96万$ 8.96万
- 项目类别: