Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
基本信息
- 批准号:10091485
- 负责人:
- 金额:$ 38.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAntigensAtomic Force MicroscopyBiochemicalBiochemistryBiologicalBiological ProcessBiomechanicsBlood coagulationCell Surface ReceptorsCell divisionCell physiologyCellsCoagulation ProcessDNADevelopmentDiagnosisDiseaseEmbryonic DevelopmentFamilyFibroblastsFluorescenceFluorescence MicroscopyFluorescence PolarizationFluorescence Resonance Energy TransferFocal AdhesionsGoalsHemostatic functionImageImaging technologyImmobilizationIndividualIntercellular JunctionsLifeLinkMagnetismMapsMeasurementMeasuresMechanicsMethodsMicroscopeModelingMolecularMolecular ConformationNanotechnologyNatureNeoplasm MetastasisOpticsOrganismPathway interactionsPlatelet ActivationPlatelet aggregationPolarization MicroscopyReceptor CellResolutionScienceSignal PathwaySignal TransductionSpectrum AnalysisStrokeStructureT-LymphocyteTechniquesTechnologyTestingTimeTractionTraction Force MicroscopyWorkbasebiological systemsexperiencefluorescence imagingfluorophorefunctional outcomesimprovedinstrumentationmechanical forcemechanotransductionmigrationmillisecondmolecular dynamicsmolecular imagingmolecular mechanicsnanoscalepublic health relevancereceptorsingle moleculestemstem cell differentiationstem cellssymposiumtechnique developmenttemporal measurementtooltransmission processtumor growth
项目摘要
Project Summary
Cells are highly dynamic, squeezing, pulling, and tugging on their surroundings and on each other. Each
individual interaction involves forces. These forces are felt by specific receptors and molecules. Although small
in magnitude (pN), these molecular forces can have profound biological impacts in many aspects of cellular life
including the fate of differentiating stem cells, cell division, cancer metastasis, and blood clotting. Therefore, the
ability to characterize the interplay between physical forces and biochemical signals is a critical component of
understanding signaling pathways in living systems. There are two main techniques used to study molecular
mechanobiology: single molecule force spectroscopy (SMFS) and traction force microscopy (TFM) based
methods. While powerful, these approaches suffer from several drawbacks. SMFS measures individual receptor
forces (pN), but it does so only one molecule at a time. Conversely TFM provides spatial maps of cellular forces,
but on the nN scale, orders of magnitude larger than the forces applied by individual cell receptors. To bridge
these approaches, we invented molecular tension fluorescence microscopy (MTFM) which uses conventional
fluorescence microscopy to map cellular forces with pN resolution by using a calibrated molecular force probe.
The goal of this proposal is to transform the capabilities of MTFM allowing orders of magnitude improvement in
spatial and temporal resolution as well as the mapping of force orientation. Molecular mechanobiology remains
at the fringes of biomedical sciences because of the lack of tools to precisely quantify and link mechanics to
cellular biochemistry. Our goal is to transform the field of molecular mechanobiology by developing new imaging
technologies to enable the study cellular forces at unprecedented resolution. These technologies, centered
around the DNA-based MTFM probes, will provide a broadly applicable platform of technology to investigate
molecular mechanics, and the functional outcomes of molecular forces, in diverse biological systems. In Aim 1
we will address the spatial resolution gap, and leverage the DNA-based force probes to develop super-resolution
force-PAINT with the goal of dynamic force imaging with 20 nm spatial resolution. In Aim 2 we will probe the
dynamics of forces and force fluctuations by harnessing the power of two approaches, FRAP and FCS, to study
molecular force dynamics with nsec to msec time resolution. Finally, in Aim 3 we will leverage fluorescence
polarization microscopy to measure the 3D orientations of molecular forces. We will use fibroblast focal
adhesions, platelet activation and coagulation, and T cell antigen recognition to test and verify our approach.
Accomplishment of these goals will provide a new toolkit for understanding molecular forces and generating a
framework of how force organization and dynamics influence cellular function in healthy and disease states.
项目概要
细胞是高度动态的,它们对周围环境以及彼此之间进行挤压、拉扯和拉扯。
个体相互作用涉及力。这些力可以被特定的受体和分子感受到。
以大小 (pN) 计,这些分子力可以对细胞生命的许多方面产生深远的生物影响。
包括分化干细胞、细胞分裂、癌症转移和血液凝固的命运。
表征物理力和生化信号之间相互作用的能力是
了解生命系统中的信号传导途径有两种主要技术用于研究分子。
力学生物学:基于单分子力谱(SMFS)和牵引力显微镜(TFM)
虽然这些方法很强大,但也有一些缺点。SMFS 测量的是个体受体。
力(pN),但每次只作用一个分子。相反,TFM 提供细胞力的空间图,
但在 nN 尺度上,比单个细胞受体施加的力大几个数量级。
这些方法,我们发明了分子张力荧光显微镜(MTFM),它使用传统的
荧光显微镜通过使用校准的分子力探针以 pN 分辨率绘制细胞力。
该提案的目标是转变 MTFM 的功能,从而实现数量级的改进
空间和时间分辨率以及分子力学生物学的映射仍然存在。
由于缺乏精确量化力学并将其与力学联系起来的工具,它处于生物医学科学的边缘
我们的目标是通过开发新的成像技术来改变分子力学生物学领域。
能够以前所未有的分辨率研究细胞力的技术。
围绕基于 DNA 的 MTFM 探针,将为研究提供广泛适用的技术平台
目标 1 中的分子力学以及分子力的功能结果。
我们将解决空间分辨率差距,并利用基于 DNA 的力探针来开发超分辨率
Force-PAINT 的目标是实现 20 nm 空间分辨率的动态力成像。在目标 2 中,我们将探讨
通过利用 FRAP 和 FCS 两种方法的力量来研究力和力波动的动力学
最后,在目标 3 中,我们将利用荧光。
我们将使用成纤维细胞焦点来测量分子力的 3D 方向。
粘附、血小板活化和凝血以及 T 细胞抗原识别来测试和验证我们的方法。
这些目标的实现将为理解分子力并生成
力组织和动力学如何影响健康和疾病状态下细胞功能的框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexa Lynn Mattheyses其他文献
Alexa Lynn Mattheyses的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexa Lynn Mattheyses', 18)}}的其他基金
Lightsheet Microscope for the UAB High-Resolution Imaging Facility
用于 UAB 高分辨率成像设备的光片显微镜
- 批准号:
10429045 - 财政年份:2022
- 资助金额:
$ 38.52万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10320359 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Administrative Supplement: iLas Ring TIRF for 3D super-resolved imaging of cellular force magnitude and direction
行政补充:iLas Ring TIRF 用于细胞力大小和方向的 3D 超分辨成像
- 批准号:
10389532 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Administrative Supplement: Summer undergraduate research:Imaging the Molecular Forces Generated by Synthetic Motors
行政补充:暑期本科生研究:合成电机产生的分子力成像
- 批准号:
10393870 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Visualizing Desmosome Structure and Dynamics by Polarized Fluorescence Microscopy
通过偏振荧光显微镜观察桥粒结构和动力学
- 批准号:
8773042 - 财政年份:2014
- 资助金额:
$ 38.52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 38.52万 - 项目类别:
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 38.52万 - 项目类别:
Engineering detours around the biologic barriers to allogeneic, iPSC-derived CAR T immunotherapy
工程绕开了同种异体、iPSC 衍生的 CAR T 免疫疗法的生物障碍
- 批准号:
10607952 - 财政年份:2023
- 资助金额:
$ 38.52万 - 项目类别:
Role of antigen-specific T cells in immunotherapy-associated acute interstitial nephritis and kidney allograft rejection
抗原特异性 T 细胞在免疫治疗相关急性间质性肾炎和肾同种异体移植排斥中的作用
- 批准号:
10351987 - 财政年份:2022
- 资助金额:
$ 38.52万 - 项目类别: