Spatial inference methods for image analysis
图像分析的空间推理方法
基本信息
- 批准号:10093037
- 负责人:
- 金额:$ 40.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdolescenceAdolescentAffectAnatomyBedsBrainBrain MappingBrain regionCharacteristicsClimateCognitiveCollectionComputer softwareDataData AnalysesDetectionElectroencephalographyEnsureFiberFollow-Up StudiesFunctional ImagingFunctional Magnetic Resonance ImagingFundingGaussian modelGoalsGrantHealthHeightImageImage AnalysisLocationMapsMethodologyMethodsMicroscopyModelingNoiseOutputPatternProceduresReproducibilityResearchSample SizeSignal TransductionSoftware ToolsStandardizationSurfaceTestingThree-dimensional analysisTimeUncertaintyUnited States National Institutes of HealthWorkanatomic imagingbiobankbrain volumecognitive developmentcognitive functiondata structurefield theoryfunctional gainimaging modalitylocal maximaneuroimagingrelating to nervous systemsimulationspatiotemporalsubstance usetooluser friendly software
项目摘要
From biomedical to environmental research, a central problem in image analysis is to recognize and
locate important effects. An archetypal example is image analysis of the 3D brain volume or the 2D cortical
surface, using both anatomical and functional imaging. Examples also abound in 1D functional data (EEG
patterns or anatomical neural fibers), 2D images (microscopy) and 2D spatial data (climate maps). These
problems share a common data structure in which smooth functions or images are observed repeatedly and
aligned on a fine grid. The goal of localization is to identify regions where the signal is strong or where
differences exist between conditions or groups of subjects.
While there is a rich collection of tools to analyze imaging data, the focus has been mainly on
significance testing and controlling error rates under the null hypothesis and has been limited by practical
but unrealistic assumptions about the noise field, compromising error control and statistical power. On the
other hand, the functional data analysis approach rightly works under the non-zero mean model but ignores
the analytical power of smooth random field theory, which has been so successful in image analysis and
could enable similar gains for functional data.
The main goal of this proposal is to develop new spatial inference methods that directly address the
estimation of non-sparse signals and quantification of their spatial uncertainty, in order to increase statistical
power, control error rates and obtain appropriately interpretable results. In the previous cycle of this grant,
we established methodology for formal error control in peak detection. This renewal develops location
uncertainty and detection power for peaks (Aim 1), and moves further to develop confidence bands and
spatial confidence regions for the entire signal (Aim 2) and for excursion sets where the signal exceeds a
threshold (Aim 3). Methods are proposed to target both the mean (effect magnitude) and the signal-to-noise
ratio (standardized mean or effect size), allowing interpretable inference in the presence of spatially non-
constant variance, characteristic of neuroimaging data. The proposal offers clear definitions of spatial
inference, and supports the methodology with smooth Gaussian random field theory, forgoing the stationarity
and zero-mean assumptions. These methods are rigorously validated and used to map the cognitive effects
of addictive substance use in the large NIH-funded Adolescent Brain Cognitive Development (ABCD) study.
This proposal uniquely brings together ideas from image and functional data analysis to provide more
accurate and interpretable spatial localization of important effects in smooth signals and images. The
methods developed in this proposal offer more accurate mapping of the brain and other domains, and
higher statistical power to identify locations where important effects occur, enhancing scientific
understanding and guiding better targeted follow-up studies.
从生物医学到环境研究,图像分析中的一个核心问题是识别和
找到重要的效果。原型示例是3D脑体积或2D皮质的图像分析
表面,使用解剖和功能成像。示例在1D功能数据中也比比皆是(脑电图
模式或解剖神经纤维),2D图像(显微镜)和2D空间数据(气候图)。这些
问题共享一种常见的数据结构,其中反复观察到平稳的功能或图像,并且
在细网格上对齐。本地化的目的是确定信号强的区域或
条件或受试者组之间存在差异。
虽然有大量的工具来分析成像数据,但重点主要集中在
零假设下的显着性测试和控制错误率,并受到实际限制
但是关于噪声场,损害误差控制和统计能力的不切实际的假设。在
另一方面,功能数据分析方法正确地在非零均值模型下工作,但忽略了
平滑随机场理论的分析能力,在图像分析和
可以为功能数据带来类似的收益。
该提案的主要目标是开发直接解决该方法的新的空间推理方法
为了增加统计的估计,估计非SPARSE信号和空间不确定性的量化
功率,控制错误率并获得适当解释的结果。在这笔赠款的上一个周期中,
我们在峰值检测中建立了正式误差控制的方法。此更新开发位置
峰值的不确定性和检测能力(AIM 1),并进一步发展以发展信心带和
整个信号的空间置信区域(AIM 2)以及信号超过A的游览集
阈值(目标3)。提出方法是针对平均值(效应幅度)和信噪比的方法
比率(标准均值或效果大小),可以在存在空间非 -
恒定方差,神经影像数据的特征。该提案提供了空间的明确定义
推理,并通过平滑的高斯随机场理论支持该方法,放弃了平稳性
和零均值的假设。这些方法经过严格验证,并用于绘制认知效果
大型NIH资助的青少年脑认知发展(ABCD)研究中的成瘾性药物使用。
该建议独特地从图像和功能数据分析中汇集了想法,以提供更多
在平滑信号和图像中重要效应的准确和可解释的空间定位。这
该提案中开发的方法提供了更准确的大脑和其他域的映射,以及
更高的统计能力确定发生重要影响的位置,增强科学
了解和指导更好的目标后续研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Schwartzman其他文献
Armin Schwartzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Schwartzman', 18)}}的其他基金
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10684184 - 财政年份:2022
- 资助金额:
$ 40.59万 - 项目类别:
Estimating The Fraction of Variance Explained by Genetics and Neuroanatomy in Neuropsychiatric Conditions
估计神经精神疾病中遗传学和神经解剖学解释的方差分数
- 批准号:
10521915 - 财政年份:2022
- 资助金额:
$ 40.59万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
9204653 - 财政年份:2016
- 资助金额:
$ 40.59万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8445964 - 财政年份:2012
- 资助金额:
$ 40.59万 - 项目类别:
Voxelwise analysis of imaging response to therapy in neuro-oncology
神经肿瘤学治疗的成像反应的体素分析
- 批准号:
8799693 - 财政年份:2012
- 资助金额:
$ 40.59万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8236310 - 财政年份:2012
- 资助金额:
$ 40.59万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8790516 - 财政年份:2012
- 资助金额:
$ 40.59万 - 项目类别:
Multiple testing methods for random fields and high-dimensional dependent data
随机场和高维相关数据的多种测试方法
- 批准号:
8633009 - 财政年份:2012
- 资助金额:
$ 40.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Smartphone-based meditation training to reduce adolescent depression
基于智能手机的冥想训练可减少青少年抑郁
- 批准号:
10664427 - 财政年份:2023
- 资助金额:
$ 40.59万 - 项目类别:
Low-input profiling of brain-region and cell-type specific epigenomic dynamics to understand gene-environment interactions in opioid addiction
对大脑区域和细胞类型特异性表观基因组动力学进行低输入分析,以了解阿片类药物成瘾中的基因与环境的相互作用
- 批准号:
10605801 - 财政年份:2023
- 资助金额:
$ 40.59万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10671046 - 财政年份:2022
- 资助金额:
$ 40.59万 - 项目类别:
Disruption of semen liquefaction using specific KLK3 inhibitors as a new contraceptive
使用特定 KLK3 抑制剂作为新避孕药破坏精液液化
- 批准号:
10764639 - 财政年份:2022
- 资助金额:
$ 40.59万 - 项目类别:
Disruption of semen liquefaction using specific KLK3 inhibitors as a new contraceptive
使用特定 KLK3 抑制剂作为新避孕药破坏精液液化
- 批准号:
10419647 - 财政年份:2022
- 资助金额:
$ 40.59万 - 项目类别: