Core E: Data Sciences Core
核心 E:数据科学核心
基本信息
- 批准号:10085556
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAffectAnimal ModelApplications GrantsAwardBehavioralBig DataBioinformaticsBiometryCaregiversClinicalCollaborationsComplexConsultConsultationsDataData AnalysesData ScienceData Science CoreData SetDatabasesDiseaseDown SyndromeElectronic Health RecordFacultyFundingFutureGenerationsGeneticGoalsGrantHealthHousingHuman ResourcesImageIndividualInstitutesIntellectual and Developmental Disabilities Research CentersIntellectual functioning disabilityInterdisciplinary StudyLinkMethodologyMethodsModelingModernizationOutcomePopulationPsychologyRare DiseasesRecordsReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesRoleSample SizeSamplingServicesSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsTalentsTechniquesTestingTrainingTraining ActivityTraining SupportUniversitiesWorkautism spectrum disorderbiobehaviorbioimagingcomplex data data miningdata resourcedisabilityhuman modelimprovedimproved outcomeindividualized medicineinformatics infrastructureinformation processinginnovationlarge datasetslarge scale datamultimodal dataneuroimagingneuroinformaticsneurophysiologynovelpatient orientedprogramspublic health relevanceresearch and developmentspatiotemporalstatisticsstructured datasuccesstargeted treatmenttooltranslational neuroscience
项目摘要
The success and impact of nearly every project in IDD hinges on the proper use of statistical techniques. Thus,
Core E has a critical role in facilitating research for all IDDRC investigators, as well as for the progress of the
other IDDRC Cores and Signature Research Project. Core E performs a unique function for IDDRC
investigators as it helps them identify and use the statistical and methodological expertise and resources
available at Vanderbilt University (VU) and Vanderbilt University Medical Center (VUMC) that are appropriate
for their questions – especially for more complicated research designs (e.g., many layers of nesting) or those
with statistical limitations (e.g., small sample sizes common in research with rare populations). Further, through
generative activity with Clinical Translational and Translational Neuroscience Cores B and C, Core E provides
sophisticated and non-trivial statistical methods and models tailored to IDD-related scientific questions (e.g.,
Bayesian spatio-temporal models for neuroimaging analysis). In addition to having considerable expertise in
biostatistics, neuro-statistics, and quantitative psychology, Vanderbilt is also a national leader in developing big
data structures and mining that data to advance health and development research, including the Synthetic
Derivative (SD), a de-identified dataset of electronic health record data collected from over ~2.8 million total
records. Though such big data structures are incredible resources to Vanderbilt, and especially IDDRC
investigators with their ability to capture large samples of rare disorders, it can be challenging to put the data in
analyzable formats and select suitable statistical approaches for analysis. Core E enables IDDRC investigators
to fully capitalize on all these VU/VUMC resources through three aims: Aim 1, which provides access to
modern statistical and data science methods to answer questions of relevance to IDD, including conducting
data analyses for the Signature IDDRC Research Project; Aim 2, which enhances training in IDD research for
those engaging in data science methods, including implementing a novel internal training grant program
between Data Sciences Institute trainees and the IDDRC; and Aim 3, which supports innovation in health-
related IDD research by facilitating use of large data sets such as the SD, including providing cutting-edge
consultations and tools for working with large-scale SD IDD-curated database that IDDRC investigators can
use for generating pilot data and conducting studies. Collectively, Core E’s aims and generative work and
interactions with other IDDRC Cores not only meets the immediate needs of IDDRC investigators, but also
anticipates future ones, by allowing for novel resources, platforms, and methods to be developed. By tackling
and solving complex, multi-modal data science questions, Core E is poised to contribute substantially
over the next 5 years to accelerating scientific discovery to improve the outcomes of people with IDDs.
IDD 中几乎每个项目的成功和影响都取决于统计技术的正确使用。
Core E 在促进所有 IDDRC 研究人员的研究以及促进该研究的进展方面发挥着至关重要的作用
其他 IDDRC 核心和签名研究项目 Core E 为 IDDRC 执行独特的功能。
研究人员,因为它可以帮助他们识别和使用统计和方法学专业知识和资源
范德比尔特大学 (VU) 和范德比尔特大学医学中心 (VUMC) 提供合适的服务
回答他们的问题——特别是对于更复杂的研究设计(例如,多层嵌套)或那些
具有统计限制(例如,在稀有人群的研究中常见的小样本)。
临床转化和转化神经科学核心 B 和 C、核心 E 提供生成活动
针对 IDD 相关科学问题(例如,
用于神经影像分析的贝叶斯时空模型)。
范德比尔特大学在生物统计学、神经统计学和定量心理学方面也处于全国领先地位。
数据结构和挖掘该数据以推进健康和发展研究,包括综合研究
Derivative (SD),从超过 280 万个电子健康记录数据中收集的去识别化数据集
尽管这样的大数据结构对于 Vanderbilt,尤其是 IDDRC 来说是令人难以置信的资源。
由于研究人员有能力捕获罕见疾病的大量样本,因此将数据放入其中可能具有挑战性
IDDRC 调查人员可以使用可分析的格式并选择合适的统计方法进行分析。
通过三个目标充分利用所有这些 VU/VUMC 资源: 目标 1,提供访问
现代统计和数据科学方法来回答与 IDD 相关的问题,包括进行
IDDRC 标志性研究项目的数据分析;目标 2,加强 IDD 研究培训
那些从事数据科学方法的人,包括实施新颖的内部培训资助计划
数据科学研究所学员与 IDDRC 之间的合作;以及目标 3,支持健康领域的创新
通过促进 SD 等大型数据集的使用,包括提供前沿的 IDD 研究
IDDRC 调查人员可以使用用于使用由 SD IDD 管理的大型数据库的咨询和工具
用于生成试点数据和进行研究,以及 Core E 的目标和生成工作。
与其他 IDDRC 核心的交互不仅可以满足 IDDRC 调查人员的即时需求,还可以
通过允许开发新颖的资源、平台和方法来预测未来。
并解决复杂的多模态数据科学问题,Core E 有望做出重大贡献
未来 5 年加速科学发现,改善 IDD 患者的治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakmook Kang其他文献
Hakmook Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakmook Kang', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Dynamic multimodal connectivity analysis of brain networks in focal epilepsy
局灶性癫痫脑网络的动态多模态连接分析
- 批准号:
10678514 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Attentional Mechanisms of Cognitive Compensation in Subjective Cognitive Decline and AD Risk
主观认知下降和 AD 风险中认知补偿的注意机制
- 批准号:
10738600 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别: