Genetic mechanisms of snail/schistosome compatibility
蜗牛/血吸虫相容性的遗传机制
基本信息
- 批准号:10078938
- 负责人:
- 金额:$ 36.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-10 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAmino AcidsBackcrossingsBindingBiomphalariaCandidate Disease GeneChronicChronic DiseaseCountryDoseDrug resistanceGenesGeneticGenomeGenomic SegmentGoalsHaplotypesHelminthsImmunologyInbreedingInfectionInterruptionKnowledgeLinkLiteratureMapsMolecularNatural ResistanceParasitesParasitic DiseasesPathway interactionsPharmaceutical PreparationsPhenotypePoisonPopulationQuantitative Trait LociRNA InterferenceResearchResistanceSchistosomaSchistosoma mansoniSchistosomatidaeSchistosomiasisSnailsTestingVaccinesVariantcausal variantdisabilityeffective therapygenetic manipulationgenome wide association studyhuman diseaseinsertion/deletion mutationinterestnovel strategiesprotein functionpublic health relevanceresistance genetraittransmission processwaterborne
项目摘要
1 Schistosomiasis is by far the most important helminth parasitic disease of humans. Vaccines are unavailable,
2 the only effective treatment involves repeated dosing with a single drug, and now drug resistance is a major
3 concern. Schistosomes require aquatic snails for transmission. Mass drug administration alone has proven
4 ineffective at eliminating schistosomiasis. It is now widely accepted that an integrated approach that includes
5 snail control is essential. Yet current snail control strategies are unsustainable, involving toxic chemicals or
6 introduced predators or competitors. New approaches are needed that focus on transmission by snails.
7 Understanding the molecular mechanisms by which snails and schistosomes interact is key for finding new
8 strategies to interrupt transmission. Yet knowledge about molluscan immunology is far from adequate, and
9 decades of painstaking research on the molecular basis of snail-schistosome compatibility have yielded just
10 a handful of candidate genes and mechanisms. Using genome-wide association studies we recently
11 identified in the genome of Biomphalaria glabrata three genomic regions in which allelic variation strongly
12 affects resistance to Schistosoma mansoni. One of these regions, PB35, is particularly interesting for two
13 reasons. Firstly, PB35 showed the strongest allelic association with resistance of any gene observed to
14 date, and was significant in two independent studies using different populations of parasites and snails. So
15 the gene in this region may be universally important in controlling schistosomes, rather than important in just
16 a particular strain-by-strain combination. There appear to be only 9 or 10 genes in the region, some of which
17 are completely missing on some haplotypes. So Aim 1 is to use PacBio to fully sequence and annotate each
18 haplotype, and then use RNAi to determine which gene is responsible for the GWAS results. Secondly,
19 PB35 is particularly exciting because it maps to the same chromosomal region as a QTL marker for the
20 dramatic difference in resistance between two well-studied strains of snails, BgBS90 and BgM-line. BgBS90
21 is highly resistant to almost all tested strains of S. mansoni, while BgM-line is susceptible, and the difference
22 segregates as a simple, Mendelian trait. Several lines of evidence suggest the gene responsible for the
23 extreme resistance of BgBS90 is in the PB35 region. Aim 2 will test that hypothesis by using repeated
24 backcrossing and marker-assisted selection to swap just the PB35 region between strains, and then test if
25 that reverses their phenotypes. Why BgBS90 snails are so resistant to schistosomes has been the subject of
26 many functional studies. If the gene in PB35 is behind that phenotype, it will be an important discovery.
27 Identifying new resistance genes will substantially advance our knowledge of snail-schistosome
28 immunology. It is also likely that one could someday genetically manipulate natural snail populations to
29 make them less able to transmit schistosomes. Identifying key resistance genes and characterizing their
30 function would be an essential first step toward that goal.
31
1迄今为止,血吸虫病是人类最重要的蠕虫寄生疾病。疫苗不可用,
2唯一有效的治疗方法是用一种药物重复给药,现在耐药性是主要的
3关注。血吸虫需要水生蜗牛进行传输。仅大规模药物管理就证明了
4无效消除血吸虫病。现在被广泛接受的是,包括
5蜗牛控制至关重要。然而,当前的蜗牛控制策略是不可持续的,涉及有毒化学物质或
6个引入的掠食者或竞争者。需要采用新的方法来专注于蜗牛的传播。
7了解蜗牛和血块相互作用的分子机制是寻找新的关键
8个中断传输的策略。然而,关于软体动物免疫学的知识远非足够
从蜗牛 - 尖刺兼容性的分子基础上进行的9年艰苦研究仅产生了
10少数候选基因和机制。使用全基因组关联研究我们最近
11在生物掌lia glabrata的基因组中鉴定出的三个基因组区域,其中等位基因变异很强
12影响对曼森血吸虫的抵抗力。这些区域之一,PB35,对于两个地区特别有趣
13个原因。首先,PB35显示出与观察到的任何基因的抗性最强的等位基因关联
14日期,在两项使用不同种群的寄生虫和蜗牛种群的独立研究中很重要。所以
15该地区的基因在控制血块中可能普遍重要,而不是在公正中很重要
16特定的按应变组合。该地区似乎只有9或10个基因
某些单倍型完全缺少17个。因此,目标1是使用PACBIO完全顺序和注释每个
18单倍型,然后使用RNAi来确定哪个基因负责GWAS结果。第二,
19 PB35特别令人兴奋,因为它将其映射到同一染色体区域作为QTL标记
20两种经过良好的蜗牛菌株BGBS90和BGM线之间的抗性差异。 BGBS90
21对几乎所有经过测试过测试的曼氏菌都具有高度耐药性,而BGM线很容易受到影响,差异
22种隔离为简单的孟德尔特征。几条证据表明,负责的基因
23 BGBS90的极端电阻在PB35区域。 AIM 2将通过重复测试该假设
24反向交叉和标记辅助选择仅交换菌株之间的PB35区域,然后测试是否
25逆转其表型。为什么BGBS90蜗牛对血吸虫具有抗性
26许多功能研究。如果PB35中的基因在该表型背后,那将是一个重要的发现。
27识别新的抗性基因将大大提高我们对蜗牛刺激体的了解
28免疫学。总有一天有一天可以将天然蜗牛种群操纵到
29使它们能够传播血吸虫。识别钥匙抗性基因并表征其
30功能将是朝着该目标迈出的重要第一步。
31
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Scott Blouin其他文献
Michael Scott Blouin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Scott Blouin', 18)}}的其他基金
Genetic mechanisms of snail/schistosome compatibility
蜗牛/血吸虫相容性的遗传机制
- 批准号:
10725889 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
Genetic mechanisms of snail/schistosome compatibility
蜗牛/血吸虫相容性的遗传机制
- 批准号:
10311504 - 财政年份:2019
- 资助金额:
$ 36.75万 - 项目类别:
A new genetic mechanism in snails that controls transmission of schistosomes
蜗牛控制血吸虫传播的新遗传机制
- 批准号:
8615053 - 财政年份:2014
- 资助金额:
$ 36.75万 - 项目类别:
High-density linkage map to find snail genes that block schistosome transmission
高密度连锁图谱寻找阻止血吸虫传播的蜗牛基因
- 批准号:
8960339 - 财政年份:2014
- 资助金额:
$ 36.75万 - 项目类别:
A new genetic mechanism in snails that controls transmission of schistosomes
蜗牛控制血吸虫传播的新遗传机制
- 批准号:
9120657 - 财政年份:2014
- 资助金额:
$ 36.75万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
Genetic Dissection of Stress Responses in Shwachman-Diamond Syndrome
什瓦赫曼-戴蒙德综合征应激反应的基因剖析
- 批准号:
10594366 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别:
Vitamin D and beta-amyloid signaling in hyperparathyroidism
甲状旁腺功能亢进症中的维生素 D 和 β-淀粉样蛋白信号传导
- 批准号:
10668177 - 财政年份:2023
- 资助金额:
$ 36.75万 - 项目类别: