The role of beta 2 integrins in macrophage fusion
β2整合素在巨噬细胞融合中的作用
基本信息
- 批准号:10082459
- 负责人:
- 金额:$ 47.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdherens JunctionAdhesivesAffectArtificial ImplantsAttenuatedBinding SitesBiocompatible MaterialsBiologicalBiologyCD18 AntigensCD47 geneCell SurvivalCell membraneChronicComplexDataDefectDepositionDissectionE-CadherinEndogenous RetrovirusesEnzymesEpithelialEventExtracellular SpaceFailureFibrinFibrinogenFluorescenceForeign BodiesForeign-Body ReactionGene TargetingGenesGiant CellsGoalsGrantGranulation TissueImaging TechniquesImmunoelectron MicroscopyImplantIn VitroInflammationIntegrinsKnock-outKnowledgeLigandsMacrophage-1 AntigenMedical DeviceMicrofluidic MicrochipsMicrofluidicsMicroscopyModelingMolecularMusMyeloid CellsNanotechnologyPhenotypePlasma ProteinsPropertyProsthesis ImplantationProteinsProteomicsRecording of previous eventsResearchResolutionRoleStructureSurfaceSystemTestingThickTimeTranslatingVascular GraftVideo MicroscopyWild Type Mouseadhesion receptorbasebiomaterial developmentexperimental studyhigh resolution imagingimplantationin vitro Modelin vivoknock-downlive cell imagingmacrophagemechanical propertiesmouse modelnectinnovelpolymerizationprotein Ereceptorresponsesyncytintechnological innovation
项目摘要
PROJECT SUMMARY
Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) accompanies a
variety of maladies associated with chronic inflammation, including the foreign body response (FBR)
elicited by implanted biomaterials. Despite the long history of research on FBR, the molecular and
cellular mechanisms of macrophage fusion, an event central to the long-term failure of implanted
prosthetic vascular grafts and other medical devices, remain poorly understood. In our preliminary
studies using in vivo implantation model, we found that the formation of MGCs and granulation tissue,
which develops around the implant and is a precursor of the undesirable fibrotic cap, was almost
completely abolished in fibrinogen-deficient mice. Surprisingly, the number of MGCs formed on
biomaterials implanted into Mac-1-deficient mice was greater than in wild-type mice and the thickness
of granulation tissue was larger. We hypothesize that macrophage fusion on biomaterials critically
depends on the deposited fibrin(ogen) matrix and the absence of Mac-1, through the alteration of
adhesive properties of macrophages, exacerbates the FBR. Specific Aim 1 is to test this hypothesis.
Using a mouse model of biomaterial implantation and gene-targeted mice, we will perform systematic
analyses of the early and late stages of FBR and determine the M1/M2 phenotype of MGCs derived
from wild-type and Mac-1-deficient macrophages. Using nanotechnology approaches we will
characterize the adhesive and mechanical properties of fibrin(ogen) matrices deposited on biomaterials
in wild-type and Mac-1-deficient mice. Specific Aim 2 will characterize previously unrecognized actin-
based zipper-like structures (ZLS) that form between MGCs on implanted biomaterials. We developed
an in vitro model that reproduces the formation of ZLS and demonstrated that the intercellular space
within ZLS is filled with junctional proteins E-cadherin and nectin-2. We hypothesize that MGCs form
epithelial-like junctions that aid the MGC survival. Taking advantage of technological innovations
including a microfluidic chamber that allows the precise dissection of ZLS followed by proteomics
analyses, high-resolution microscopy, live cell imaging and mice with myeloid cell-specific KO of E-
cadherin and other components of junctions, we will determine the composition of ZLS and their role in
the FBR. Specific Aim 3 is to determine the role of authentic fusogenic proteins syncytins in
macrophage fusion. Based on our finding that macrophage fusion is initiated by an actin-based
protrusion, we will use knockdown experiments, EM and video microscopy to test the hypothesis that a
fusion-competent protrusion at the leading edge of a donor macrophage contains syncytins. Overalls,
these studies will define the novel biology of macrophage fusion and characterize new mechanisms that
have the potential to modulate the FBR.
项目摘要
巨噬细胞融合导致形成多核巨细胞(MGC)的巨噬细胞融合伴随
与慢性炎症有关的疾病种类,包括外国体内反应(FBR)
由植入的生物材料引起。尽管有关于FBR的研究的悠久历史,但分子和
巨噬细胞融合的细胞机制,这是植入长期失败的核心
假肢血管移植物和其他医疗设备仍然了解不足。在我们的初步中
使用体内植入模型的研究,我们发现MGC和肉芽组织的形成,
植入物周围发展,并且是不良纤维帽的前体,几乎是
在缺陷型小鼠中完全废除。令人惊讶的是,在上形成的MGC数量
植入MAC-1缺陷小鼠中的生物材料大于野生型小鼠,厚度
肉芽组织的较大。我们假设巨噬细胞在生物材料上进行批判性融合
取决于沉积的纤维蛋白(OGEN)基质和Mac-1的不存在,通过改变
巨噬细胞的粘附特性,加剧了FBR。具体目的1是检验该假设。
使用生物材料植入和基因靶向小鼠的小鼠模型,我们将进行系统性
分析FBR的早期和晚期阶段,并确定MGC的M1/M2表型
来自野生型和Mac-1缺陷巨噬细胞。使用纳米技术方法,我们将
表征沉积在生物材料上的纤维蛋白(OGEN)矩阵的粘合剂和机械性能
在野生型和MAC-1缺陷小鼠中。特定的目标2将表征先前未识别的肌动蛋白 -
基于植入生物材料的MGC之间形成的基于拉链样结构(ZLS)。我们开发了
一种体外模型,该模型再现了ZLS的形成并证明了细胞间空间
ZLS内部充满了连接蛋白E-钙粘着蛋白和Nectin-2。我们假设MGC形式
有助于MGC存活的上皮状连接。利用技术创新
包括一个微流体室,该腔室允许精确解剖ZLS,然后是蛋白质组学
分析,高分辨率显微镜,活细胞成像和小鼠E-的髓样细胞特异性KO
钙粘蛋白和交界处的其他组成部分,我们将确定Zls的组成及其在
FBR。具体目的3是确定正宗融合蛋白合成蛋白在
巨噬细胞融合。根据我们的发现,巨噬细胞融合是由基于肌动蛋白的
突出,我们将使用敲低实验,EM和视频显微镜来检验以下假设。
供体巨噬细胞前缘的融合能力突出包含合蛋白。工作服,
这些研究将定义巨噬细胞融合的新生物学,并表征新机制
有可能调节FBR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana P Ugarova其他文献
Tatiana P Ugarova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana P Ugarova', 18)}}的其他基金
RECOGNITION OF FIBRINOGEN BY LEUKOCYTE INTERGRINS
白细胞整合素对纤维蛋白原的识别
- 批准号:
6390461 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of Fibrinogen by Leukocyte Integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
8197907 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of Fibrinogen by Leukocyte Integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
8386971 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
The role of beta 2 integrins in macrophage fusion
β2整合素在巨噬细胞融合中的作用
- 批准号:
9888193 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
RECOGNITION OF FIBRINOGEN BY LEUKOCYTE INTERGRINS
白细胞整合素对纤维蛋白原的识别
- 批准号:
6184837 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
RECOGNITION OF FIBRINOGEN BY LEUKOCYTE INTERGRINS
白细胞整合素对纤维蛋白原的识别
- 批准号:
6537649 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of fibrinogen by leukocyte integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
6917095 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of Fibrinogen by Leukocyte Integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
8039061 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of fibrinogen by leukocyte integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
7447379 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
Recognition of fibrinogen by leukocyte integrins
白细胞整合素对纤维蛋白原的识别
- 批准号:
7260330 - 财政年份:1999
- 资助金额:
$ 47.97万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Basis and Function of Lateral Assembly of Cadherin Molecules in Adhesive Junctions of Humans and Model Organisms
人类和模型生物粘附连接中钙粘蛋白分子横向组装的基础和功能
- 批准号:
10715056 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Investigating the epidermal microenvironment in melanoblast migration and invasion: a novel approach to understanding invasive melanoma
研究黑色素细胞迁移和侵袭的表皮微环境:一种了解侵袭性黑色素瘤的新方法
- 批准号:
10537221 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Direct and Quantitative Probing of Desmosome Mechanotransduction
桥粒力转导的直接定量探测
- 批准号:
10713124 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Polarity proteins and intestinal mucosal responses to inflammation and injury
极性蛋白和肠粘膜对炎症和损伤的反应
- 批准号:
10442201 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别: