Regulation of renal ion transport by the CUL3-WNK-SPAK pathway
CUL3-WNK-SPAK 通路对肾离子转运的调节
基本信息
- 批准号:10083727
- 负责人:
- 金额:$ 33.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino AcidsAnimalsAutophagocytosisBindingBlood PressureCardiac MyocytesCellsChronic Kidney FailureComplexCullin ProteinsCultured CellsDataDefectDevelopmentDietary PotassiumDiseaseDisputesDistalDistal convoluted renal tubule structureEquilibriumExonsFamilial diseaseFunctional disorderGitelman syndromeGoalsHeart failureHeterozygoteHomeostasisHumanHypertensionHypokalemiaImmunofluorescence ImmunologicIn VitroIon TransportKidneyKnock-outKnockout MiceKnowledgeLeadLigaseLimb structureMaintenanceMediatingMessenger RNAModelingMolecularMusMutationNephronsNeuronsNormal RangePathway interactionsPhenotypePhosphotransferasesPhysiologyPlasmaPlayPolyuriaPotassiumPrimary Cell CulturesProgress ReportsProteinsRare DiseasesRegulationRoleSLC11A2 geneScaffolding ProteinSkeletal MuscleSodiumSystemTestingThickUbiquitinationWorkbaseblood pressure regulationcullin-3driving forceexon skippingextracellularfamilial hyperkalemic hypertensiongain of functionhyperkalemiain vivoinhibitor/antagonistinsightloss of functionmetermouse modelmutantnovel therapeuticsrenal epitheliumscaffoldsensorubiquitin ligase
项目摘要
Project Summary
The kidney plays a key role in maintaining plasma [K+], with distal segments of the nephron fine-tuning K+
secretion to keep it in the normal range. We previously proposed that the renal distal convoluted tubule (DCT)
plays a key role by sensing plasma [K+]. Decreasing plasma [K+] by dietary K+ restriction activates the WNK-
SPAK/OSR1-NCC pathway, and increased NaCl reabsorption though NCC reduces delivery of sodium to, and
possibly remodels, distal K+ secreting segments to lower K+ secretion. The disease Familial Hyperkalemic
Hypertension (FHHt) is caused by increased NCC activation due to mutations in WNKs, Cullin 3 (CUL3), and
KLHL3. The Cullin Ring Ligase (CRL) complex, composed of the scaffold CUL3, the substrate adaptor KLHL3,
and the ligase RING, degrades WNKs. The effects of mutant CUL3, produced by skipping of exon 9 which
causes internal deletion of 57 amino acids (CUL3-∆9), are controversial. CUL3-∆9 triggers its own degradation
in vitro, and also in a mouse model of CUL3 FHHt. Thus, the prevailing model is that CUL3-∆9 causes FHHt by
inducing CUL3 haploinsufficiency. Our preliminary data in CUL3 heterozygote mice and a new mouse model of
CUL3-∆9 FHHt do not support this, and we hypothesize that CUL3-∆9 exerts dominant effects to cause FHHt
and dysregulate the plasma [K+] sensor. We propose that CUL3-∆9 causes FHHt by a combined effect of
lowering abundance of itself and of KLHL3. Our data suggest that NKCC2 activation along the thick ascending
limb (TAL) may also contribute to FHHt. Finally, we previously generated kidney-specific CUL3 knockout (KO)
mice, and found that they display a severe phenotype (polyuria and chronic kidney disease), with defects along
multiple nephron segments. Our overall aim is to determine the mechanisms underlying CUL3-∆9-mediated
FHHt, and gain insight into CUL3 function in the kidney. In Aim 1 we will determine the effects of CUL3-∆9
expression and CUL3 KO specifically along DCT to determine whether CRL disruption along DCT is sufficient
to cause FHHt. We will determine the effects of CRL disruption on KLHL3 in mice, since we found CUL3-∆9
inappropriately degrades it in cultured cells. We will also directly test whether mice with lower abundance of
CUL3 and KLHL3 develop FHHt. In Aim 2 we will determine whether remodeling of K+-secreting segments
occurs in FHHt mediated by CUL3-∆9, and examine the effects of CRL disruption on NKCC2 activity. Some
models suggest that CUL3-∆9 leads to dramatically lower CRL activity, but data suggest this would be lethal.
We propose that CUL3-∆9 may exert unique effects that cause it to preferentially degrade certain CRL
adaptors. Therefore, in Aim 3 we will examine effects of CUL3-∆9 on other CRL adaptors and substrates in our
mouse models and in primary cell culture.
项目摘要
肾脏在维持血浆[K+]方面起着关键作用,并具有肾小管微调K+的远端段
将其保持在正常范围内的分泌。我们先前提出了肾远端曲折管(DCT)
通过感测等离子体[K+]发挥关键作用。饮食K+限制减少血浆[K+]会激活WNK-
SPAK/OSR1-NCC途径,尽管NCC降低了钠的递送,并增加了NaCl的重吸收
可能会重塑,远端K+分泌段以降低K+分泌。疾病家族性高钾血症
高血压(FHHT)是由于WNK,Cullin 3(Cul3)和
Klhl3。 Cullin环连接酶(CRL)复合物,由支架Cul3,底物适配器KLHL3组成
和连接酶环,降解了wnks。突变cul3的效果,通过跳过外显子9产生的效果
引起57个氨基酸(CUL3-∆9)的内部缺失是有争议的。 Cul3-∆9触发自己的退化
体外,以及在Cul3 FHHT的小鼠模型中。那是普遍的模型,即Cul3-∆9导致FHHT
诱导CUL3单倍宽度。我们在Cul3杂合小鼠中的初步数据和新的鼠标模型
Cul3-∆9 FHHT不支持这
并使血浆[K+]传感器失调。我们建议CUL3-∆9通过
降低自身和KLHL3的抽象。我们的数据表明NKCC2沿厚升的激活
肢体(TAL)也可能有助于FHHT。最后,我们以前产生了肾脏特异性的Cul3敲除(KO)
小鼠,发现它们表现出严重的表型(多尿和慢性肾脏疾病),存在缺陷
多个肾单位段。我们的总体目的是确定CUL3-∆9介导的机制
FHHT,并深入了解肾脏中的Cul3功能。在AIM 1中,我们将确定CUL3-∆9的影响
表达和CUL3 KO专门沿DCT确定沿DCT的CRL破坏是否足够
引起FHHT。我们将确定CRL破坏对小鼠KLHL3的影响,因为我们发现CUL3-∆9
不适当地将其降解在培养的细胞中。我们还将直接测试较低丰度的小鼠
CUL3和KLHL3开发FHHT。在AIM 2中,我们将确定是否重塑K+分配段
发生在由CUL3-∆9介导的FHHT中,并检查CRL破坏对NKCC2活性的影响。一些
模型表明CUL3-∆9导致CRL活性大大降低,但数据表明这将是致命的。
我们建议CUL3-∆9可能会执行独特的效果,从而使其优先降解某些CRL
适配器。因此,在AIM 3中,我们将检查Cul3-∆9对我们的其他CRL适配器和底物的影响
小鼠模型和原发性细胞培养。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES A MCCORMICK其他文献
JAMES A MCCORMICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES A MCCORMICK', 18)}}的其他基金
Regulation of renal ion transport by the CUL3-WNK-SPAK pathway
CUL3-WNK-SPAK 通路对肾离子转运的调节
- 批准号:
9906495 - 财政年份:2019
- 资助金额:
$ 33.88万 - 项目类别:
Regulation of renal ion transport by the CUL3-WNK-SPAK pathway
CUL3-WNK-SPAK 通路对肾离子转运的调节
- 批准号:
9883599 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Regulation of renal ion transport by the CUL3-WNK-SPAK pathway
CUL3-WNK-SPAK 通路对肾离子转运的调节
- 批准号:
10318606 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Regulation of sodium transport and blood pressure by SPAK/OSR1 kinases
SPAK/OSR1 激酶对钠转运和血压的调节
- 批准号:
8629140 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Regulation of renal ion transport by the CUL3-WNK-SPAK pathway
CUL3-WNK-SPAK 通路对肾离子转运的调节
- 批准号:
10544339 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Regulation of sodium transport and blood pressure by SPAK/OSR1 kinases
SPAK/OSR1 激酶对钠转运和血压的调节
- 批准号:
8827332 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Analysis of distal conboluted tubule function in vivo
体内远端复合小管功能分析
- 批准号:
7920597 - 财政年份:2009
- 资助金额:
$ 33.88万 - 项目类别:
Analysis of distal conboluted tubule function in vivo
体内远端复合小管功能分析
- 批准号:
8037790 - 财政年份:2008
- 资助金额:
$ 33.88万 - 项目类别:
Analysis of distal conboluted tubule function in vivo
体内远端复合小管功能分析
- 批准号:
8232130 - 财政年份:2008
- 资助金额:
$ 33.88万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关键非催化氨基酸残基影响新型GH43家族双功能酶底物特异性的机制研究
- 批准号:32301052
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Development and Production of Standardized Reference Diets for Zebrafish Research
斑马鱼研究标准化参考饲料的开发和生产
- 批准号:
10823702 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别: