Combining Systems Pharmacology Modeling With Machine Learning To Identify Sub-Populations At Risk Of Drug-Induced Torsades de Pointes
将系统药理学建模与机器学习相结合,识别面临药物诱发尖端扭转型室速风险的亚群
基本信息
- 批准号:10082298
- 负责人:
- 金额:$ 3.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-09-26
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdverse eventAlgorithmsAntibioticsAntihistaminesAntipsychotic AgentsArrhythmiaBiological FactorsCardiacCellsCharacteristicsClassificationClinicalClinical TrialsComputational TechniqueConsumptionDiseaseEchocardiographyElectrocardiogramExposure toGoalsHandIncidenceIndividualIon ChannelKnowledgeLeadLifeMachine LearningMeasuresModelingMolecularMuscle CellsPatient riskPatientsPatternPersonsPharmaceutical PreparationsPharmacologyPhysiologicalPhysiologyPopulationPopulations at RiskPredispositionReportingResearch Project GrantsResourcesRiskStatistical Data InterpretationSystemTherapeuticTimeTissuesTorsades de PointesTranslatingVentricularVentricular ArrhythmiaVentricular FibrillationVentricular Tachycardiabasecomplex datadelayed rectifier potassium channeldrug marketefficacious treatmentexperimental studyheart cellhigh riskhigh risk populationimprovedinsightpatient subsetsprecision medicinepreventresponders and non-respondersrisk predictionrisk stratificationside effectsimulationsudden cardiac deathsupervised learningtrait
项目摘要
Project Summary
Torsades de Pointes, a lethal ventricular arrhythmia, is a side effect of several commonly used
antiarrhythmics, antibiotics, antipsychotics, antihistamines and other ‘non-cardiovascular’ therapies. Though
this adverse event is rare, it can lead to ventricular fibrillation and sudden cardiac death. The ignorance about
the underlying differences between those at high risk versus low risk of forming this drug-induced arrhythmia
halts any considerable progress in preventing it. Rather than simply removing these drugs from the market, a
closer examination of the physiological and clinical traits of patients who benefited from the treatment and
those who formed the arrhythmia needs to be performed. This highlights the idea of precision medicine and the
importance of identifying relevant sub-groups of patients likely to benefit from a treatment versus those who
are highly susceptible to a drug-induced adverse event. The current standards for predicting risk, a lengthened
action potential (AP) duration of cells and a prolonged QT interval on an echocardiogram (ECG) have proven
ineffective. Thus, there is a need to extract pertinent information from the cellular and tissue levels before
administration of the therapeutic to detect patterns only apparent in the high-risk population. To analyze this
concept, I plan to (1) explain at a mechanistic level the differences between the healthy and at-risk patients, (2)
identify important AP and ECG signatures that can predict risk early on, and (3) connect the physiological and
clinical findings to improve the profile and description of the high-risk population. I will combine two
complementary computational techniques: (1) simulations with mechanistic quantitative systems pharmacology
models of heart cells and tissues; and (2) advanced machine learning approaches that can identify hidden
patterns. Thus, this project aims to develop an algorithm which will improve risk prediction and upgrade the
current imperfect and unreliable standards for prescribing proarrhythmic therapies.
项目摘要
Torsades de点是一种致命的心室心律不齐,是几种常用的副作用
抗心律失常,抗生素,抗精神病药,抗组胺药和其他“非心血管”疗法。尽管
这种不良事件很少见,它会导致心室纤颤和猝死。无知
高风险与低风险形成这种药物引起的心律不齐的人之间的潜在差异
阻止预防它的任何考虑进展。而不是简单地将这些药物从市场上取出
仔细检查受益于治疗的患者的身体和临床特征
那些形成心律不齐的人需要进行。这突出了精密医学和
确定可能受益于治疗的患者的相关子群体的重要性
非常容易受到药物引起的不良事件的影响。当前预测风险的标准,加长
细胞的动作电位(AP)持续时间和超声心动图(ECG)的延长QT间隔已被证明
无效。这是需要从细胞和组织水平中提取相关信息
治疗以检测仅在高危人群中明显的模式。分析这一点
概念,我计划(1)在机械水平上解释健康和处于危险患者之间的差异,(2)
确定可以尽早预测风险的重要AP和ECG签名,(3)连接物理和
临床发现,以改善高危人群的概况和描述。我将结合两个
互补计算技术:(1)与机械定量系统药理学的模拟
心脏细胞和组织的模型; (2)可以识别隐藏的高级机器学习方法
模式。这是该项目旨在开发一种算法,该算法将改善风险预测并升级
当前的不完美和不可靠的标准用于开处方促性疗法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meera Varshneya其他文献
Meera Varshneya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Validation and qualification of an ex vivo human cardiac tissue-based assay for the assessment of the potential cardiotoxicity of pharmaceutical compounds
用于评估药物化合物潜在心脏毒性的离体人体心脏组织测定的验证和鉴定
- 批准号:
9312909 - 财政年份:2014
- 资助金额:
$ 3.4万 - 项目类别:
A novel, multiparametric cardiac safety assay using human myocytes
使用人类肌细胞进行新型多参数心脏安全测定
- 批准号:
8522876 - 财政年份:2013
- 资助金额:
$ 3.4万 - 项目类别:
A novel, multiparametric cardiac safety assay using human myocytes
使用人类肌细胞进行新型多参数心脏安全测定
- 批准号:
8769228 - 财政年份:2013
- 资助金额:
$ 3.4万 - 项目类别:
Restoring Communication with an Intracortical Neural Interface System
恢复与皮质内神经接口系统的通信
- 批准号:
7915251 - 财政年份:2009
- 资助金额:
$ 3.4万 - 项目类别:
Restoring Communication with an Intracortical Neural Interface System
恢复与皮质内神经接口系统的通信
- 批准号:
8468807 - 财政年份:2009
- 资助金额:
$ 3.4万 - 项目类别: