Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
基本信息
- 批准号:10118056
- 负责人:
- 金额:$ 74.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAddressAdultArchitectureArrhythmiaArtificial IntelligenceBirthCCCTC-binding factorCardiacCardiac MyocytesCardiac developmentCardiovascular DiseasesCell Differentiation processCell LineCell modelCellsChIP-seqChildChromatinChromatin Remodeling FactorChromosome StructuresCodeComplementComplexCongenital AbnormalityCongenital Heart DefectsDataData SetDevelopmentDiagnosisDiseaseElementsEndothelial CellsEngineeringEnhancersFamilyFrequenciesGATA4 geneGene ExpressionGene Expression RegulationGenesGeneticGenetic DeterminismGenetic TranscriptionGenomeGenomicsHeartHeart AbnormalitiesHeart DiseasesHistonesHumanHuman BiologyHuman DevelopmentLeadMachine LearningMapsMeasuresModelingMolecularMutateMutationPatientsPhenotypeProcessProteinsRegulationRegulator GenesRegulatory ElementResolutionSMARCA2 geneStructureTimeUntranslated RNAVariantWorkcardiogenesiscell typecohesincomputational platformcongenital heart disorderdeep learningdisease-causing mutationhigh throughput screeninghistone modificationhuman diseasehuman modelhuman pluripotent stem cellimprovedin silicomachine learning methodnovelpredictive modelingpromoterstem cell differentiationstem cell modeltranscription factor
项目摘要
PROJECT SUMMARY
A major unanswered question is how chromatin topology coordinates human development and cellular
differentiation, and how genome folding is differentially regulated in human disease. It is thought that three-
dimensional (3D) chromatin organization is driven by transcriptional regulators, but fundamental mechanisms
of this regulation as it relates to disease-relevant human cells have not been well explored. We propose to
elucidate the temporally dynamic 3D nucleome (4DN) that underlies human cardiac differentiation, its
molecular underpinnings, and the impact of mutations that underly defective 4DN organization in human
congenital heart disease (CHD). CHDs are the most common birth defect and arise from abnormal heart
development. The genetic basis of CHD is largely mutations in genes encoding chromatin modifiers (e.g.
WDR5, KMT2D) and transcription factors (TFs, e.g. TBX5, GATA4), many of which also cause adult-onset
arrhythmias. The impact of CHD mutations on the 4DN has not been explored. We hypothesize that 3D
genome folding is highly regulated during cardiac differentiation and is impacted by disease-causing mutations
in transcriptional regulators and non-coding elements. We will use iPS cell models and machine learning to
elucidate dynamic 3D chromatin organization in human cardiomyocytes and endothelial cells during normal
and diseased cardiac differentiation. We propose 3 specific aims: Aim 1: Establish a kilobase-scale 4D map
of genome folding in human cardiomyocytes (CM) and endothelial cell (EC) differentiation. We will use
directed differentiation of human iPS cells towards the two major cell types of the developing heart: CMs and
ECs, and using microC across a fine time course of differentiation we will define at kilobase scale the 3D
organization of the genome, capturing the states of developmental intermediates and the final differentiated
cells. This aim will generate an essential integrated 4DN template for discovery in cardiac differentiation. In
Aim 2: we will Determine the regulatory and disease-related basis for cardiac 3D chromatin
organization. We will perform microC in iPS cell lines with CHD-associated mutations in transcriptional
regulators, differentiated into CMs and ECs. These findings will establish the degree to which CHD is caused
by abnormal genome folding and chromatin states, with important relevance to other human cardiovascular
diseases. Finally, Aim 3 will address High-throughput screening of millions of CHD and synthetic non-
coding mutations with a deep-learning model of dynamic genome folding. We will build a deep-learning
model predicting 3D chromatin contact frequencies across cardiac differentiation at kilobase-resolution. By
introducing thousands of CHD patient deletions and other non-coding mutations in silico, we will prioritize
variants likely to interact with transcriptional regulators to cause disease through disrupted genome folding.
Several candidates will be validated in engineered iPS cells differentiated into CMs and ECs. These results will
provide a novel platform for computational discovery of disease variant impact across diverse human diseases
项目摘要
一个主要的未解决的问题是染色质拓扑如何协调人类发育和细胞
分化以及基因组折叠在人类疾病中的差异调节。据认为三
尺寸(3D)染色质组织是由转录调节器驱动的,但基本机制
与疾病相关的人类细胞有关的调节尚未得到很好的探索。我们建议
阐明了人类心脏分化的基础的时间动态3D核心(4DN)
分子基础以及人类中基本缺陷组织的突变的影响
先天性心脏病(CHD)。 CHD是最常见的先天缺陷,是由异常心脏引起的
发展。 CHD的遗传基础在很大程度上是编码染色质修饰剂的基因中的突变(例如
WDR5,KMT2D)和转录因子(例如TFS,例如TBX5,GATA4),其中许多也会引起成人发作
心律不齐。尚未探索冠心病突变对4DN的影响。我们假设3D
基因组折叠在心脏分化过程中受到高度调节,并受到致病突变的影响
在转录调节器和非编码元件中。我们将使用IPS细胞模型和机器学习
在正常情况下阐明人类心肌细胞和内皮细胞中的动态3D染色质组织
和患病的心脏分化。我们提出了3个特定目的:目标1:建立千目标尺度4D地图
人类心肌细胞(CM)和内皮细胞(EC)分化中的基因组折叠。我们将使用
将人IPS细胞的定向分化为发育中心的两种主要细胞类型:CMS和
ECS,以及在差分差异过程中使用Microc,我们将以千目标尺度定义3D
基因组的组织,捕获发展中间体的状态和最终差异化
细胞。该目标将生成一个必不可少的集成4DN模板,以在心脏分化中发现。在
目标2:我们将确定心脏3D染色质的调节和疾病相关的基础
组织。我们将在转录中具有与CHD相关的突变的IPS细胞系中执行Microc
监管机构,分为CMS和EC。这些发现将确定引起冠心病的程度
通过异常基因组折叠和染色质状态,与其他人类心血管具有重要意义
疾病。最后,AIM 3将解决数百万冠心和合成非 - 的高通量筛查
具有动态基因组折叠的深度学习模型的编码突变。我们将建立一个深度学习
在千目标分辨率下预测跨心脏分化的3D染色质接触频率的模型。经过
在计算机中引入数千个CHD患者缺失和其他非编码突变,我们将优先考虑
变体可能与转录调节剂相互作用,通过破坏基因组折叠引起疾病。
在工程的IPS细胞中,将对几个候选物进行验证,分为CMS和EC。这些结果将会
提供了一个新颖的平台,用于计算各种人类疾病的疾病变异影响
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benoit Gaetan Bruneau其他文献
Benoit Gaetan Bruneau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benoit Gaetan Bruneau', 18)}}的其他基金
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10487430 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10266148 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10683277 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10245030 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10471990 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10006189 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional Landscape of Glycosylation in Skin Cancer
皮肤癌中糖基化的功能景观
- 批准号:
10581094 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别:
Characterization of Epstein-Barr Virus Subversion of the Host SMC5/6 Restriction Pathway
Epstein-Barr 病毒颠覆宿主 SMC5/6 限制途径的特征
- 批准号:
10679118 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别: