Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
基本信息
- 批准号:10118056
- 负责人:
- 金额:$ 74.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAddressAdultArchitectureArrhythmiaArtificial IntelligenceBirthCCCTC-binding factorCardiacCardiac MyocytesCardiac developmentCardiovascular DiseasesCell Differentiation processCell LineCell modelCellsChIP-seqChildChromatinChromatin Remodeling FactorChromosome StructuresCodeComplementComplexCongenital AbnormalityCongenital Heart DefectsDataData SetDevelopmentDiagnosisDiseaseElementsEndothelial CellsEngineeringEnhancersFamilyFrequenciesGATA4 geneGene ExpressionGene Expression RegulationGenesGeneticGenetic DeterminismGenetic TranscriptionGenomeGenomicsHeartHeart AbnormalitiesHeart DiseasesHistonesHumanHuman BiologyHuman DevelopmentLeadMachine LearningMapsMeasuresModelingMolecularMutateMutationPatientsPhenotypeProcessProteinsRegulationRegulator GenesRegulatory ElementResolutionSMARCA2 geneStructureTimeUntranslated RNAVariantWorkcardiogenesiscell typecohesincomputational platformcongenital heart disorderdeep learningdisease-causing mutationhigh throughput screeninghistone modificationhuman diseasehuman modelhuman pluripotent stem cellimprovedin silicomachine learning methodnovelpredictive modelingpromoterstem cell differentiationstem cell modeltranscription factor
项目摘要
PROJECT SUMMARY
A major unanswered question is how chromatin topology coordinates human development and cellular
differentiation, and how genome folding is differentially regulated in human disease. It is thought that three-
dimensional (3D) chromatin organization is driven by transcriptional regulators, but fundamental mechanisms
of this regulation as it relates to disease-relevant human cells have not been well explored. We propose to
elucidate the temporally dynamic 3D nucleome (4DN) that underlies human cardiac differentiation, its
molecular underpinnings, and the impact of mutations that underly defective 4DN organization in human
congenital heart disease (CHD). CHDs are the most common birth defect and arise from abnormal heart
development. The genetic basis of CHD is largely mutations in genes encoding chromatin modifiers (e.g.
WDR5, KMT2D) and transcription factors (TFs, e.g. TBX5, GATA4), many of which also cause adult-onset
arrhythmias. The impact of CHD mutations on the 4DN has not been explored. We hypothesize that 3D
genome folding is highly regulated during cardiac differentiation and is impacted by disease-causing mutations
in transcriptional regulators and non-coding elements. We will use iPS cell models and machine learning to
elucidate dynamic 3D chromatin organization in human cardiomyocytes and endothelial cells during normal
and diseased cardiac differentiation. We propose 3 specific aims: Aim 1: Establish a kilobase-scale 4D map
of genome folding in human cardiomyocytes (CM) and endothelial cell (EC) differentiation. We will use
directed differentiation of human iPS cells towards the two major cell types of the developing heart: CMs and
ECs, and using microC across a fine time course of differentiation we will define at kilobase scale the 3D
organization of the genome, capturing the states of developmental intermediates and the final differentiated
cells. This aim will generate an essential integrated 4DN template for discovery in cardiac differentiation. In
Aim 2: we will Determine the regulatory and disease-related basis for cardiac 3D chromatin
organization. We will perform microC in iPS cell lines with CHD-associated mutations in transcriptional
regulators, differentiated into CMs and ECs. These findings will establish the degree to which CHD is caused
by abnormal genome folding and chromatin states, with important relevance to other human cardiovascular
diseases. Finally, Aim 3 will address High-throughput screening of millions of CHD and synthetic non-
coding mutations with a deep-learning model of dynamic genome folding. We will build a deep-learning
model predicting 3D chromatin contact frequencies across cardiac differentiation at kilobase-resolution. By
introducing thousands of CHD patient deletions and other non-coding mutations in silico, we will prioritize
variants likely to interact with transcriptional regulators to cause disease through disrupted genome folding.
Several candidates will be validated in engineered iPS cells differentiated into CMs and ECs. These results will
provide a novel platform for computational discovery of disease variant impact across diverse human diseases
项目概要
一个尚未解答的主要问题是染色质拓扑如何协调人类发育和细胞
分化,以及基因组折叠在人类疾病中如何受到差异性调节。人们认为,三——
三维(3D)染色质组织由转录调节因子驱动,但基本机制
这种与疾病相关的人类细胞相关的调节尚未得到很好的探索。我们建议
阐明人类心脏分化背后的时间动态 3D 核组 (4DN),其
分子基础,以及人类 4DN 组织缺陷的突变的影响
先天性心脏病(CHD)。 CHD 是最常见的出生缺陷,由心脏异常引起
发展。 CHD 的遗传基础主要是编码染色质修饰基因(例如染色质修饰基因)的突变。
WDR5、KMT2D)和转录因子(TF,例如 TBX5、GATA4),其中许多也会导致成人发病
心律失常。 CHD 突变对 4DN 的影响尚未被探索。我们假设 3D
基因组折叠在心脏分化过程中受到高度调控,并受到致病突变的影响
转录调控因子和非编码元件。我们将使用 iPS 细胞模型和机器学习来
阐明正常情况下人心肌细胞和内皮细胞的动态 3D 染色质组织
和患病的心脏分化。我们提出了 3 个具体目标: 目标 1:建立千碱级 4D 地图
人类心肌细胞(CM)和内皮细胞(EC)分化中的基因组折叠。我们将使用
人类 iPS 细胞定向分化为发育中心脏的两种主要细胞类型:CM 和
EC,并在分化的精细时间过程中使用 microC,我们将在千碱基尺度上定义 3D
基因组的组织,捕获发育中间体和最终分化的状态
细胞。这一目标将生成一个重要的集成 4DN 模板,用于发现心脏分化。在
目标2:我们将确定心脏3D染色质的监管和疾病相关基础
组织。我们将在具有 CHD 相关转录突变的 iPS 细胞系中进行 microC
监管机构,分为 CM 和 EC。这些发现将确定引起冠心病的程度
由异常的基因组折叠和染色质状态引起,与其他人类心血管疾病具有重要相关性
疾病。最后,目标 3 将解决数以百万计的 CHD 和合成非药物的高通量筛选问题。
使用动态基因组折叠的深度学习模型编码突变。我们将建立一个深度学习
以千碱基分辨率预测心脏分化过程中 3D 染色质接触频率的模型。经过
在计算机中引入数千个 CHD 患者缺失和其他非编码突变,我们将优先考虑
变异可能与转录调节因子相互作用,通过破坏基因组折叠而引起疾病。
几种候选药物将在分化为 CM 和 EC 的工程化 iPS 细胞中得到验证。这些结果将
为计算发现不同人类疾病的疾病变异影响提供一个新的平台
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benoit Gaetan Bruneau其他文献
Benoit Gaetan Bruneau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benoit Gaetan Bruneau', 18)}}的其他基金
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10487430 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10266148 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Genetic determinants of 4D genome folding in human cardiac development
人类心脏发育中 4D 基因组折叠的遗传决定因素
- 批准号:
10683277 - 财政年份:2020
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10245030 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10471990 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Regulation of cardiac gene regulation and differentiation by dynamic chromatin remodeling complexes
项目2:动态染色质重塑复合物对心脏基因调控和分化的调控
- 批准号:
10006189 - 财政年份:2019
- 资助金额:
$ 74.22万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional Landscape of Glycosylation in Skin Cancer
皮肤癌中糖基化的功能景观
- 批准号:
10581094 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别:
Characterization of Epstein-Barr Virus Subversion of the Host SMC5/6 Restriction Pathway
Epstein-Barr 病毒颠覆宿主 SMC5/6 限制途径的特征
- 批准号:
10679118 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 74.22万 - 项目类别: