Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
基本信息
- 批准号:10075085
- 负责人:
- 金额:$ 12.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAftercareAllelesBiochemical PathwayBiologicalBrainBrain regionCandidate Disease GeneChromosome MappingCocaineCommunitiesComputer AnalysisComputing MethodologiesConsumptionCustomDataData AnalysesData SetDatabasesDevelopmentDoseDrug AddictionDrug abuseEngineeringExhibitsFentanylGene ExpressionGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenome engineeringGenomic SegmentHaplotypesInbred StrainInbred Strains MiceIndividualMapsMeasuresMethamphetamineMethodsMorbidity - disease rateMorphineMusNicotineNicotine WithdrawalPathway interactionsPatternPhenotypePlayPopulationPopulations at RiskPredispositionPreventionProceduresPropertyPublic HealthResearch PersonnelRoleScienceSelf AdministrationTestingTimeTissuesValidationWorkaddictionbasecomputerized toolsconditioned fearconditioned place preferencecostdrug of abuseexperimental studygenetic analysisgenetic varianthuman tissueimprovedinterestlarge datasetsmetabolomicsmultiple omicsnew therapeutic targetnicotine exposurenovelphenomeresponsesocietal coststherapeutic developmenttraittranscriptome sequencing
项目摘要
Project Summary/Abstract
Due to the increased morbidity and societal cost of drug abuse, identification of genetic factors affecting the
response to drugs of abuse (DOA) are of particular interest
because this will aid in identifying at risk populations
. However, a major challenge in biomedical
science is determining how genetic differences within a population affect the properties (i.e. phenotypes, traits)
of an individual. Using conventional methods, it often requires years of painstaking work to discover and
characterize a genetic variant that affects a given phenotypic response. Several years ago, we developed a
more efficient method for mapping genes to traits, called haplotype-based computational genetic mapping
(HBCGM).
and could provide potential novel targets for therapeutic development
In an HBCGM experiment, a property of interest is measured in inbred mouse strains; and genetic
factors are computationally predicted by identifying the genomic regions where the pattern of genetic variation
correlates with the distribution of trait values among the strains. HBCGM analyses are completed much more
quickly than conventional genetic analysis methods. However, the methods used for experimental validation of
genetic factors have limitations and are time consuming.
This project will further develop computational methods that will enable genetic factors affecting many
important biomedical traits to be discovered and experimentally characterized. A high-throughput version of
HBCGM (HT-HBCGM) will be used to analyze 8,225 publicly available datasets, which measure 213,000
increases genetic discovery
power by exploiting the redundancy present in the many datasets that examine similar responses. Novel
computational tools that facilitate the integrated analysis of genetic, transcriptional and metabolomic data will
also be developed. This includes
responses in panels of inbred mouse strains. We deploy a novel method that
specialized metabolic networks (for brain and 3 other tissues) for
computationally identifying metabolomic changes that correlate with gene expression or genetic differences. To
stimulate other investigators to make genetic discoveries, all results and methods from this project will be
made fully available to the scientific community. These computational tools will be used to analyze customized
`multi-omic' (genetic, transcriptional, and metabolomic) datasets that measure: (i) fifteen responses of inbred
strain panels to four DOA (cocaine, methamphetamine, fentanyl, and nicotine); and (ii) corresponding DOA-
induced transcriptional and metabolomic changes in brain. Integrated analysis of this data will identify
genes/pathways affecting the response to DOA.
We then apply a high efficiency method for engineering
specific allelic changes into the genome of inbred strains, and the engineered lines are used to experimentally
test the effect of an identified genetic factor on the response to a DOA.
项目概要/摘要
由于药物滥用的发病率和社会成本增加,影响药物滥用的遗传因素的鉴定
对滥用药物 (DOA) 的反应特别令人感兴趣
因为这将有助于识别高危人群
。然而,生物医学领域面临的重大挑战
科学正在确定群体内的遗传差异如何影响特性(即表型、性状)
一个人的。使用传统方法,通常需要多年的艰苦工作才能发现和
表征影响给定表型反应的遗传变异。几年前,我们开发了一个
将基因映射到性状的更有效方法,称为基于单倍型的计算遗传映射
(HBCGM)。
并可以为治疗开发提供潜在的新靶标
在 HBCGM 实验中,在近交系小鼠品系中测量了感兴趣的特性;和遗传
通过识别遗传变异模式所在的基因组区域来计算预测因素
与菌株之间性状值的分布相关。 HBCGM 分析已完成更多
比传统的遗传分析方法更快。然而,用于实验验证的方法
遗传因素有局限性并且耗时。
该项目将进一步开发计算方法,使遗传因素能够影响许多
有待发现和实验表征的重要生物医学特征。高通量版本
HBCGM (HT-HBCGM) 将用于分析 8,225 个公开可用的数据集,其中测量了 213,000
增加基因发现
通过利用检查类似响应的许多数据集中存在的冗余来增强功能。小说
促进遗传、转录和代谢组数据综合分析的计算工具将
也得以开发。这包括
近交系小鼠品系组中的反应。我们部署了一种新颖的方法
专门的代谢网络(针对大脑和其他 3 个组织)
通过计算识别与基因表达或遗传差异相关的代谢组变化。到
激励其他研究人员做出基因发现,该项目的所有结果和方法都将被
充分提供给科学界。这些计算工具将用于分析定制的
“多组学”(遗传、转录和代谢组学)数据集,用于测量:(i)近交的十五种反应
四种 DOA(可卡因、甲基苯丙胺、芬太尼和尼古丁)的菌株组; (ii) 相应的 DOA-
诱导大脑转录和代谢组的变化。对该数据的综合分析将确定
影响 DOA 反应的基因/途径。
然后我们应用高效的工程方法
近交系基因组中的特定等位基因变化,并且工程系用于实验
测试已确定的遗传因素对 DOA 反应的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY A PELTZ其他文献
GARY A PELTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY A PELTZ', 18)}}的其他基金
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10198889 - 财政年份:2017
- 资助金额:
$ 12.69万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10406825 - 财政年份:2017
- 资助金额:
$ 12.69万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 12.69万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
9926473 - 财政年份:2017
- 资助金额:
$ 12.69万 - 项目类别:
Stem Cell-Based In vivo Models of Human Genetic Liver Diseases
基于干细胞的人类遗传性肝病体内模型
- 批准号:
8812710 - 财政年份:2015
- 资助金额:
$ 12.69万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
- 批准号:
10751870 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Healthcare use among older adults with dementia after large-scale disasters
大规模灾难后患有痴呆症的老年人的医疗保健使用情况
- 批准号:
10591812 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别: