Develop and Commercialize the Bayesian Dose-Response Modeling System and Services
开发贝叶斯剂量反应建模系统和服务并将其商业化
基本信息
- 批准号:10081313
- 负责人:
- 金额:$ 97.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdverse effectsAdvocateBenchmarkingBiological ModelsBusinessesChemical ExposureChemicalsCommunitiesComputer softwareConfidence IntervalsDataData ReportingDependenceDevelopmentDoseDreamsEducational workshopEmploymentEpidemiologyEuropeanEvaluationFood SafetyFoundationsGenomicsGoalsGovernmentGovernment AgenciesHealthIndianaIndustryKnowledgeLibrariesLiteratureMethodologyMethodsModelingNo-Observed-Adverse-Effect LevelOnline SystemsPhaseProcessPublic HealthResearchRisk AssessmentSafetyServicesSmall Business Technology Transfer ResearchSolidStandardizationStatutes and LawsStreamSystemTestingToxic effectToxicologyTrainingUncertaintyUnited States Environmental Protection AgencyUniversitiesauthoritybasecommercializationdesignexperimental studyimprovedprogramsprototyperesearch and developmentresponseskillssuccesstool
项目摘要
PROJECT SUMMARY
Chemical risk assessment is widely applied in industries and regulatory agencies as an important tool to
evaluate chemical toxicity in support of chemical registration, safety evaluation, and exposure limitation
development. One of the most notable improvements in dose-response assessment - a required quantitative
step in risk assessment - is the development of benchmark dose (BMD) methodology to better utilize
toxicological information to facilitate toxicity evaluation of chemicals. Although the BMD method has been
advocated by the US Environmental Protection Agency (EPA) and European Food Safety Authority (EFSA) for
its scientific advantages (such as less dependency on the design of experiments and more plausible
interpretation on uncertainty) for years, the employment of the method in practical risk assessment has been
significantly hindered by a few important limitations, one of which is the lack of a reliable modeling system to
support consistent practice of BMD modeling across different sectors. Therefore, based on the Bayesian
benchmark dose modeling system (BBMD) prototype successfully built in Phase I of the STTR project, the
objective of Phase II is to further the development of the BBMD system to meet more diverse needs in dose-
response assessment and to enlarge the user base of the system as an essential component for
commercialization. The rational is that, given relatively limited practical implementation of BMD modeling for
dose-response assessment in industry and some government agencies, demonstrating and improving the
utility of the BMD method rather than sophisticating the methodology are more appropriate at the current stage
to enhance the acceptance of BMD method and then create business opportunities for the company. To
accomplish this objective, three specific aims will be pursued: (1) develop a Bayesian BMD modeling approach
with software for typical epidemiological dose-response data; (2) develop a Bayesian BMD modeling approach
with software for high-throughput dose-response data; (3) upgrade the BBMD to a data computation and
management system to perform, store, and distribute BMD analyses approved by a panel of experts. The
success of the project will fill multiple gaps that hamper the large-scale adoption of BMD methodology in
industry and government. Meanwhile, Dream Tech will increase the influence of the BBMD system and build
up user base through an array of channels to commercialize the dose-response modeling platform and
services in support of chemical risk assessment.
项目概要
化学品风险评估作为重要工具被广泛应用于行业和监管机构。
评估化学毒性以支持化学品注册、安全评估和暴露限制
发展。剂量反应评估最显着的改进之一是所需的定量
风险评估的步骤 - 是开发基准剂量 (BMD) 方法以更好地利用
毒理学信息,以促进化学品的毒性评估。尽管 BMD 方法已
美国环境保护署(EPA)和欧洲食品安全局(EFSA)倡导
它的科学优势(例如对实验设计的依赖性较小,并且更合理)
不确定性的解释)多年来,该方法在实际风险评估中的应用
受到一些重要限制的严重阻碍,其中之一是缺乏可靠的建模系统
支持不同部门 BMD 建模的一致实践。因此,基于贝叶斯
STTR项目一期成功构建基准剂量建模系统(BBMD)原型,
第二阶段的目标是进一步开发 BBMD 系统,以满足剂量方面更多样化的需求
响应评估并扩大系统的用户基础,将其作为
商业化。理由是,鉴于 BMD 建模的实际实施相对有限
工业界和一些政府机构的剂量反应评估,展示并改进了
在现阶段,BMD方法的实用性比方法论的复杂性更合适
提升BMD方法的接受度,进而为公司创造商机。到
为了实现这一目标,将追求三个具体目标:(1)开发贝叶斯 BMD 建模方法
带有典型流行病学剂量反应数据的软件; (2) 开发贝叶斯 BMD 建模方法
具有高通量剂量反应数据软件; (3) 将BBMD升级为数据计算
管理系统,用于执行、存储和分发经专家小组批准的 BMD 分析。这
该项目的成功将填补阻碍 BMD 方法大规模采用的多项空白
行业和政府。同时,梦想科技将扩大BBMD系统的影响力,打造
通过一系列渠道扩大用户群,将剂量反应建模平台商业化,
支持化学品风险评估的服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kan Shao其他文献
Kan Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kan Shao', 18)}}的其他基金
Quantitative dose-response characterization for liver carcinogenicity with non-mutagenic modes of action
非诱变作用模式下肝脏致癌性的定量剂量反应表征
- 批准号:
10542807 - 财政年份:2020
- 资助金额:
$ 97.25万 - 项目类别:
Quantitative dose-response characterization for liver carcinogenicity with non-mutagenic modes of action
非诱变作用模式下肝脏致癌性的定量剂量反应表征
- 批准号:
10318949 - 财政年份:2020
- 资助金额:
$ 97.25万 - 项目类别:
Quantitative dose-response characterization for liver carcinogenicity with non-mutagenic modes of action
非诱变作用模式下肝脏致癌性的定量剂量反应表征
- 批准号:
9892742 - 财政年份:2020
- 资助金额:
$ 97.25万 - 项目类别:
Develop and Commercialize the Bayesian Dose-Response Modeling System and Services
开发贝叶斯剂量反应建模系统和服务并将其商业化
- 批准号:
10222676 - 财政年份:2018
- 资助金额:
$ 97.25万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别:
Intersectional Stigma Reduction for Tajik Migrants Who Inject Drugs
减少注射毒品的塔吉克移民的跨部门耻辱
- 批准号:
10755435 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别:
Designing a novel post-incident intervention to address patient harassment of staff in VA primary care settings
设计一种新颖的事件后干预措施,以解决退伍军人事务部初级保健机构中患者对工作人员的骚扰问题
- 批准号:
10420831 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别:
iAGREE: A Multi- Center, Networked Patient Consent Study
iAGREE:一项多中心、网络化患者同意研究
- 批准号:
10748211 - 财政年份:2023
- 资助金额:
$ 97.25万 - 项目类别: