Novel Cell Free Therapy for Glaucoma
青光眼的新型无细胞疗法
基本信息
- 批准号:10076404
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAxonBiologicalBlindnessCaliberCell DeathCell TherapyCell TransplantationCell physiologyCellsClinicalClinical ResearchData AnalysesData CollectionDevelopmentDiseaseEngineeringEnsureExposure toFundingGlaucomaGoalsInflammatoryKnowledgeMedicalModificationOperative Surgical ProceduresPatientsPhysiologic Intraocular PressurePrecision therapeuticsReportingResearchResearch DesignRetinaRetinal DiseasesRetinal Ganglion CellsReview LiteratureRouteSchoolsScientistSiteSpecificityStudentsTestingTherapeutic UsesTimeTrainingVisionVisualWritingaxon growthbaseclinical applicationclinical translationcost efficientdesigndosageexcitotoxicityexperienceexperimental studyextracellular vesiclesfunctional lossimprovedinnovationinterestintravitreal injectionnanoparticleneuroprotectionnovelnovel therapeuticspreventstem cellstargeted deliveryundergraduate student
项目摘要
A principal unmet need in glaucoma is that medical or surgical intraocular pressure reduction is the only
clinically-approved treatment. But vision cannot be restored because retinal ganglion cell (RGC) loss is irre-
versible. Knowledge gaps to improved therapy include how to achieve neuroprotection, i.e., preventing RGCs
from dying, or, to use cell-based therapy to re-grow or replace. Administration route, dosage, and adverse
effects limit clinical application of neuroprotection and cell transplantation. Studying a new treatment using
extracellular vesicles (EVs), biologically-active 50-150 nm diameter nanoparticles derived from stem cells, the
proposal fills a gap and urgent need in the development of new treatments to prevent RGC death and vision
loss for glaucoma patients. EVs represent a potential clinically applicable means to prevent RGC, axonal, and
visual functional loss and decreasing the excitotoxic and inflammatory component of glaucoma. Our central
hypothesis is that EVs can be designed and optimized to specifically target RGCs as a basis for precision
treatment of glaucoma and, ultimately, other retinal diseases. We propose to test engineered EVs as a novel
cell-free means to specifically target neuroprotection to RGCs and to fill the knowledge gaps that presently
prevent clinical translation of EVs for retinal disease. Our specific aims are Aim 1: Determine the time course
and factors regulating the distribution of EVs in the vitreous and retina, and optimize EV delivery to
retina. Aim 2: Develop and optimize novel engineered EVs to specifically target RGCs. Successful com-
pletion of Aim 1 will optimize delivery of EVs to the retina following intravitreal injection. Aim 2 will guide
administration of EVs to produce innovative, specific, targeted delivery into RGCs, allowing specificity for
treatment at the major pathophysiological site of glaucoma. Fulfillment of these objectives will set the stage to
develop glaucoma therapeutics using EVs by optimizing administration, and by specific RGC-targeted EVs.
The study offers promise to save sight via development of safe, effective, and cost-efficient therapy to restore
or prevent loss of sight in patients with glaucoma. This contribution is expected to be significant because these
studies will provide a basis to develop EVs as a therapy for glaucoma, either primarily restoring RGC function
and axonal growth, or optimizing existing therapies such as RGC transplants. Innovative features are cell-
free therapy of glaucoma, novel targeted EVs for specific RGC action, and novel delivery materials for EVs.
The supplement for Diversity proposes to train an undergraduate student in data collection and analysis,
reviewing literature critically, designing experiments, and writing research reports. The student will be involved
with the project in the summer and during the school year. The goal is to use this experience to increase the
interest of the student in clinical research and ultimately to assist in ensuring more opportunities for diversifica-
tion of the clinician scientific workforce.
青光眼的一个主要未满足的需求是药物或手术降低眼压是唯一的方法
临床批准的治疗。但视力无法恢复,因为视网膜神经节细胞(RGC)的损失是不可预测的。
易懂的。改进治疗的知识差距包括如何实现神经保护,即预防 RGC
免于死亡,或者使用基于细胞的疗法来重新生长或替换。给药途径、剂量及不良反应
效应限制了神经保护和细胞移植的临床应用。研究一种新的治疗方法
细胞外囊泡 (EV),源自干细胞的具有生物活性的 50-150 nm 直径纳米颗粒,
该提案填补了开发新疗法以预防 RGC 死亡和视力的空白和迫切需求
青光眼患者的损失。 EVs 代表了一种潜在的临床适用手段,可预防 RGC、轴突和
视觉功能丧失并减少青光眼的兴奋毒性和炎症成分。我们的中央
假设电动车可以被设计和优化以专门针对 RGC 作为精度的基础
治疗青光眼,并最终治疗其他视网膜疾病。我们建议将工程电动汽车作为一种新颖的产品进行测试
无细胞方法专门针对 RGC 进行神经保护,并填补目前的知识空白
阻止 EV 治疗视网膜疾病的临床转化。我们的具体目标是目标 1:确定时间进程
以及调节 EV 在玻璃体和视网膜中分布的因素,并优化 EV 输送
视网膜。目标 2:开发和优化专门针对 RGC 的新型工程电动汽车。成功的com-
Aim 1 的完成将优化玻璃体内注射后 EV 向视网膜的输送。目标2将指导
管理 EV,以向 RGC 提供创新、具体、有针对性的交付,从而实现特异性
针对青光眼主要病理生理部位的治疗。这些目标的实现将为
通过优化给药和特定的 RGC 靶向 EV,使用 EV 开发青光眼疗法。
该研究有望通过开发安全、有效且具有成本效益的疗法来恢复视力
或预防青光眼患者失明。预计这一贡献将是巨大的,因为这些
研究将为开发 EV 治疗青光眼提供基础,主要是恢复 RGC 功能
和轴突生长,或优化现有疗法,例如 RGC 移植。创新功能是细胞-
青光眼的免费治疗、针对特定 RGC 作用的新型靶向 EV 以及用于 EV 的新型输送材料。
多样性的补充建议对本科生进行数据收集和分析方面的培训,
批判性地回顾文献、设计实验并撰写研究报告。学生将参与其中
在夏季和学年期间进行该项目。目标是利用这一经验来提高
学生对临床研究的兴趣,并最终帮助确保更多的多样化机会
临床医生科学队伍的重刑。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN ROTH其他文献
STEVEN ROTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN ROTH', 18)}}的其他基金
Mesenchymal stem cell extracellular vesicles for ischemic retinal damage
间充质干细胞胞外囊泡治疗缺血性视网膜损伤
- 批准号:
10707009 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
VRC: Engineered extracellular vesicles for mild TBI-induced retinal injury
VRC:工程细胞外囊泡治疗轻度 TBI 引起的视网膜损伤
- 批准号:
10598277 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
Mesenchymal stem cell extracellular vesicles for ischemic retinal damage
间充质干细胞胞外囊泡治疗缺血性视网膜损伤
- 批准号:
10843511 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
VRC: Engineered extracellular vesicles for mild TBI-induced retinal injury
VRC:工程细胞外囊泡治疗轻度 TBI 引起的视网膜损伤
- 批准号:
10688145 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
Mesenchymal stem cell extracellular vesicles for ischemic retinal damage
间充质干细胞胞外囊泡治疗缺血性视网膜损伤
- 批准号:
10766045 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
Risk factor anaylysis of perioperative visual loss
围手术期视力丧失的危险因素分析
- 批准号:
9388049 - 财政年份:2017
- 资助金额:
$ 3.24万 - 项目类别:
相似国自然基金
生物能量活性小分子凝胶构建及其促脊髓轴突再生与抗小胶质细胞过度活化的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
Ca2+/TFEB/PGC-1α通路介导线粒体生物发生在纳米氧化锌促脊髓损伤后轴突再生的机制研究
- 批准号:82172191
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
神经轴突导向因子Netrin-1和Semaphorin-3A作为新的缺血性脑卒中预后生物标志物的评估及风险预测模型的构建
- 批准号:81803307
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
EPHA受体在电磁辐射损伤新生神经元轴突生长中的调控机制
- 批准号:31870842
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
水性生物医用可降解聚氨酯材料用于脑组织修复研究
- 批准号:51733005
- 批准年份:2017
- 资助金额:305.0 万元
- 项目类别:重点项目
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 3.24万 - 项目类别:
The effects of APOE genotype in homeostatic microglial function in preclinical APOE mouse model
APOE基因型对临床前APOE小鼠模型稳态小胶质细胞功能的影响
- 批准号:
10828613 - 财政年份:2023
- 资助金额:
$ 3.24万 - 项目类别:
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 3.24万 - 项目类别:
The role of the nociceptor endocytosis in inflammatory pain
伤害感受器内吞作用在炎性疼痛中的作用
- 批准号:
10512357 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别: