Clinical feasibility of a non-invasive, low-cost wearable for measuring air trapping in COPD
用于测量 COPD 空气滞留的非侵入性低成本可穿戴设备的临床可行性
基本信息
- 批准号:10080272
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-20 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsActivities of Daily LivingAdultAirAlgorithmic AnalysisAlgorithmsAmericanAsthmaBluetoothBronchoconstrictionCaringCellular PhoneChronic BronchitisChronic Obstructive Airway DiseaseClinicClinicalClinical DataClinical ResearchClinical TrialsComputer softwareCross-Sectional StudiesDataData AnalysesDetectionDeteriorationDevelopmentDevice DesignsDevicesDiagnosisDisease ProgressionDyspneaEarly InterventionEdemaEmergency department visitExhalationExposure toFlareFrequenciesFunctional disorderFutureGeneral HospitalsGoalsHealthHealth Care CostsHeart RateHome environmentHospitalizationHospitalsHumidityIndividualInhalatorsInterventionLaboratoriesLungMachine LearningMeasurementMeasuresMedicalMedical HistoryMedical centerMethodsMilitary PersonnelMiniaturizationMinorMonitorMorbidity - disease rateMucous body substanceNoiseOralOxygen saturation measurementParticulatePatientsPharmaceutical PreparationsPhasePhysiciansPhysiologyPlethysmographyPopulationPulmonary EmphysemaPulmonary function testsPulse OximetryQuality of lifeQuestionnairesRefractoryRegulatory PathwayReportingRespiratory MusclesRespiratory physiologyRiskRunningSan FranciscoSecureSignal TransductionSmall Business Technology Transfer ResearchSmokerSpirometryStandardizationSymptomsSystemTechnologyTemperatureTestingTherapeutic InterventionTimeTranslatingUltrasonographyVeteransWhole Body PlethysmographyWireless TechnologyX-Ray Computed Tomographyaccurate diagnosisair monitoringbasecloud basedcohortcostdesignexperienceimprovedindexingmachine learning algorithmmetermicrophoneminiaturizemobile applicationmortalitynovelozone exposurepreventprototyperecruitrespiratoryscreeningsensorsmartphone Applicationsoftware developmentsuccesstoolusabilityuser-friendlywearable device
项目摘要
ABSTRACT
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of hospitalization in the US.
Exacerbations - a worsening or “flare up” of symptoms - cause most COPD hospitalizations. Since most
exacerbations can be treated with changes of inhalers and/or oral medications, at-home detection of lung
function deterioration may facilitate earlier intervention and help delay or prevent hospitalizations. The
Standards of Care for monitoring lung function are spirometry, plethysmography, and CT scan. However, these
are expensive methods and unsuited for continuous monitoring or at-home use. Various patient self-monitoring
approaches have been tried, for example, pulse oximetry, respiratory rate monitoring, and peak flow metering,
but their efficacy in reducing hospitalizations has been limited.
A common finding for all forms of COPD is air trapping, defined, as an abnormal increase in the volume
of air remaining in the lungs after exhalation is complete. A body of evidence definitively shows that air trapping
increases during exacerbations and decreases when exacerbations resolve. Recent reports show that air
trapping is an earlier harbinger of deteriorating lung function than spirometric changes, and can be measured
by low-frequency ultrasound (1-40 kHz). Acoustic monitoring of air trapping could provide clinicians with a non-
invasive tool when medical intervention is needed to avoid unnecessary ER visits and hospitalizations.
Respira Labs has developed a low-cost, non-invasive, acoustic-based wearable device that can
continually monitor lung resonance: Sylvee. The device uses known acoustic-based technology with machine-
learning algorithms to detect minor changes in lung resonance, which our preliminary results suggest
correspond to changes in air trapping. The overall objective of this project is to validate Sylvee's air trapping
algorithms in a cohort of 20 healthy controls and 40 COPD patients with and without air trapping, respectively.
In Aims 1 and 2, we will miniaturize and add sensors to the Sylvee device and develop a user interface (UI)
and a mobile application. In Aims 3 and 4, we will create an Air Trapping Index Report and validate it in a
cross-sectional study vis-à-vis whole body plethysmography as a control. Results of this project provide a
go/no-go development decision based on device function. We can apply these results in STTR Phase II, in a
larger clinical study to evaluate Sylvee as an at-home monitoring system, with a goal of reducing
hospitalizations by at least 30%. Ultimately, Sylvee will allow physicians to remotely monitor their patients' lung
function and adjust their medications to reduce healthcare costs and improve patients' quality of life.
抽象的
慢性阻塞性肺疾病(COPD)是美国住院的第三大主要原因。
恶化 - 症状的令人担忧或“爆发” - 导致大多数COPD住院。自大多数
可以通过遗传和/或口服药物的变化来治疗恶化,肺检测
功能定义可能有助于较早的干预措施,并有助于延迟或预防住院。这
监测肺功能的护理标准是肺活量测定法,体积学和CT扫描。但是,这些
是昂贵的方法,不适合连续监视或在家使用。各种患者自我监控
已经尝试了方法,例如脉搏血氧饱和度,呼吸速率监测和峰值流量计量,
但是它们在降低住院的效率受到限制。
各种形式的COPD的一个共同发现是空气诱捕,定义,因为体积异常增加
呼气完成后,肺中剩余的空气。一大批证据明确表明空气陷阱
加重过程中增加并减少加重。最近的报道表明空气
诱捕是肺部功能恶化的预兆,而不是肺活量变化,可以测量
通过低频超声(1-40 kHz)。空气捕获的声学监测可以为临床医生提供非 -
当需要进行医疗干预时,以避免不必要的急诊就诊和住院治疗时进行侵入性工具。
Respira Labs开发了一种低成本,非侵入性,基于声学的可穿戴设备,可以
连续监测肺部共振:Sylvee。该设备与机器一起使用已知的基于声学的技术 -
学习算法以检测肺部共振的微小变化,我们的初步结果表明
对应于空气陷阱的变化。该项目的总体目的是验证Sylvee的空气陷阱
分别由20个健康对照组和40名患有和没有空气捕获的COPD患者组成的算法。
在AIMS 1和2中,我们将小型化并在Sylvee设备中添加传感器并开发用户界面(UI)
和一个移动应用程序。在AIMS 3和4中,我们将创建一个空气捕获索引报告,并在
横断面研究相对于整个身体作为对照。该项目的结果提供了
基于设备功能进行/NO-GO开发决策。我们可以将这些结果应用于sttr II阶段
更大的临床研究将Sylvee评估为在家监测系统,目的是减少
住院至少30%。最终,Sylvee将允许医生远程监测患者的肺
功能并调整其药物以降低医疗保健成本并改善患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Artunduaga其他文献
Maria Artunduaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
- 批准号:52378053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
川江流域山地旧城滨水区日常生活空间与地形关系演进及其当代传承研究:以重庆为例(1891-2004)
- 批准号:52308006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:42201250
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
融合媒介环境学视角的日常生活空间体验研究
- 批准号:42171221
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
A non-invasive, automated platform for hemodynamic assessment of patients at risk of heart failure or pulmonary hypertension
用于对有心力衰竭或肺动脉高压风险的患者进行血流动力学评估的无创自动化平台
- 批准号:
10699067 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Enhancing Voluntary Motion in Broad Patient Populations with Modular Powered Orthoses
使用模块化动力矫形器增强广大患者群体的自主运动
- 批准号:
10190208 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
- 批准号:
10629293 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
- 批准号:
10295970 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Ambulatory monitoring of a vocal efficiency index to improve the clinical management of voice disorders
动态监测发声效率指数以改善发声障碍的临床管理
- 批准号:
10474472 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别: