Quantifying the individual contributions of comorbid tau neuropathologies using deep learning
使用深度学习量化共病 tau 神经病理学的个体贡献
基本信息
- 批准号:10058010
- 负责人:
- 金额:$ 45.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAgeAgingAlzheimer&aposs DiseaseAntibodiesAstrocytesAtlasesAutopsyBiologicalBrainCellsCerebral cortexCharacteristicsClassificationClinicalComplexDataDementiaDepositionDevelopmentDiagnosisDiagnosticDiseaseElementsExhibitsFutureGeneticGoldHeterogeneityHistopathologyHumanImageIndividualInvestigationKnowledgeLesionLibrariesLightMachine LearningMalignant NeoplasmsMethodsMicroscopicMonoclonal AntibodiesMorphologyNerve DegenerationNeurodegenerative DisordersNeuronsPathologicPathologistPathologyPatternPhenotypeProgressive Supranuclear PalsyProtein IsoformsResearchResourcesSamplingSenile PlaquesSpatial DistributionStainsTauopathiesTechnologyTestingTissue StainsTissuesVisualVisualizationbasecase-basedcell typeclinical biomarkerscomorbiditydeep learningdigital imaginggray matterhands-on learningimprovedlearning classifierlearning strategymethod developmentneocorticalneuropathologyprotein aggregationspecific biomarkerstau Proteinstau-1tooltumorvirtualvirtual imagingwhite matterwhole slide imaging
项目摘要
PROJECT SUMMARY/ABSTRACT
Co-occurrence of different neurodegenerative diseases is increasingly common with age and acts as a
confounding factor in the development of disease-specific biomarkers. Yet, even by the gold standard of
evaluating immunostaining for aggregated proteins in autopsy brains, pathologic complexity makes it
impossible to reliably quantify the mixture of diseases by visual inspection, especially when coexistent
disorders both feature the same aggregated protein, albeit in different disease-specific patterns. Here, we
hypothesize that recent advances in deep learning can identify the distinctive patterns of Alzheimer disease
(AD) and progressive supranuclear palsy (PSP) neuropathology, thereby allowing us to de-convolve their
individual contributions from phospho-tau immunostaining of mixed pathologies.
We will tackle this problem in three steps. First, in order to incorporate biological knowledge and enable
interpretability of our disease predictions, we will develop a set of deep learning classifiers to identify disease
relevant “features” in virtual whole slide images. These features will include different types of cells (e.g.
neurons, astrocytes), aggregates (e.g. tufted astrocytes and senile plaques that are enriched in PSP and AD,
respectively) and tissue regions (gray vs. white matter, which differ in pattern of involvement in these
diseases). Second, based on the assumption that comorbid pathologies exhibit a mixture of pure disease
features, we will build disease classifiers from pure AD and pure PSP cases. Given a local patch of tau-stained
tissue, these classifiers will return their confidence that tissue exhibited either of these diseases. We will
evaluate two approaches, one building on the “features” identified above and the other a more traditional black-
box deep learning approach working purely off of image patches. Finally, we will evaluate our pure disease
classifiers on cases with mixed pathologies based on pathologist review and concordance with antibodies to
tau isoforms whose individual histomorphologies help to distinguish between AD and PSP.
As they will identify established neuropathology features demonstrated by the widely-used AT8 phospho-tau
and 3R and 4R tau isoform immunostaining, our classifiers will be a valuable resource for future digital imaging
based studies in neuropathology. Our framework for de-convolving comorbidities from autopsy samples can be
extended to other diseases, thus enabling better integration with clinical and biomarker data, and ultimately,
improved antemortem diagnosis and therapy.
项目概要/摘要
随着年龄的增长,不同神经退行性疾病同时发生的情况越来越普遍,这可以作为一种
然而,即使按照黄金标准,疾病特异性生物标志物的发展也是混杂因素。
评估尸检大脑中聚集蛋白的免疫染色,病理复杂性使其
不可能通过目视检查可靠地量化疾病的混合物,特别是当同时存在时
尽管疾病特异性模式不同,但这两种疾病都具有相同的聚集蛋白。
推进深度学习的最新进展可以识别阿尔茨海默病的独特模式
(AD)和进行性核上性麻痹(PSP)神经病理学,从而使我们能够去卷积他们的
混合病理的磷酸-tau 免疫染色的个体贡献。
我们将分三步解决这个问题,首先,整合生物学知识并使其成为可能。
为了提高疾病预测的可解释性,我们将开发一套深度学习分类器来识别疾病
虚拟整个幻灯片图像中的相关“特征”这些特征将包括不同类型的细胞(例如
神经元、星形胶质细胞)、聚集体(例如富含 PSP 和 AD 的簇状星形胶质细胞和老年斑,
分别)和组织区域(灰质与白质,它们参与这些的模式不同)
其次,基于共病病理表现出纯疾病的混合的假设。
特征,我们将从纯 AD 和纯 PSP 病例构建疾病分类器,给定局部 tau 染色斑块。
组织,这些分类器将返回他们的信心,即组织表现出这些疾病中的任何一种。
评估两种方法,一种基于上面确定的“特征”,另一种则采用更传统的黑-
框学习深度方法纯粹基于图像补丁工作最后,我们将评估我们的纯疾病。
基于病理学家审查和抗体一致性的混合病理病例分类器
tau 亚型,其各自的组织形态有助于区分 AD 和 PSP。
因为他们将识别广泛使用的 AT8 磷酸化 tau 所证明的既定神经病理学特征
以及 3R 和 4R tau 亚型免疫染色,我们的分类器将成为未来数字成像的宝贵资源
我们从尸检样本中去卷积合并症的框架可以是
扩展到其他疾病,从而能够更好地与临床和生物标志物数据整合,最终,
改进生前诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Satwik Rajaram其他文献
Satwik Rajaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
- 批准号:
10662674 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:
10738905 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别: