Reconstitution and biophysical study of chromosome segregation machinery
染色体分离机制的重建和生物物理研究
基本信息
- 批准号:10064632
- 负责人:
- 金额:$ 65.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnaphaseArchitectureAreaBehaviorBindingBiological AssayCell CycleCell divisionCellsCentrosomeChromosome SegregationChromosomesComplexCouplingDNADiffuseDrug TargetingFeedbackFluorescenceGoalsIndividualKinetochoresLasersMalignant NeoplasmsMeasurementMeasuresMechanicsMedicalMicrotubulesMitosisMitotic spindleMolecular MachinesMonitorMovementNatureRecombinantsSignal TransductionStructureTechniquesTestingTubulinWeight-Bearing stateWorkYeastsbiophysical analysisbiophysical toolscell motilitychromosome movementexperiencefascinategraspin vivonew therapeutic targetparticlereconstitutionside effectsingle moleculespindle pole body
项目摘要
Project summary
During cell division, duplicated chromosomes are segregated by an exquisite molecular machine, the mitotic
spindle. Our goal is to uncover how this machine operates by reconstituting spindle activities and applying
advanced biophysical tools for manipulating and tracking individual molecules. We focus on the components
most central to spindle function, kinetochores, microtubules, and spindle poles. Kinetochores drive
chromosome movements by maintaining persistent, load-bearing attachments to microtubule tips, even as the
tips assemble and disassemble under their grip. Kinetochores also somehow sense when they are
erroneously attached and, if so, they detach and generate diffusible ‘wait’ signals to delay anaphase until
proper attachments are made. Spindle microtubules are organized into a bipolar configuration by the spindle
poles, which also must sustain forces to support chromosome movements and spindle assembly. In past
work, we have developed motility assays where native kinetochores or recombinant kinetochore subcomplexes
are attached to individual dynamic microtubules. Like kinetochores in vivo, the isolated kinetochore particles
remain tip-bound even as the microtubule tips assemble and disassemble – a behavior we call ‘tip-coupling’.
We have also reconstituted attachments between microtubules and spindle pole bodies, the yeast counterparts
of centrosomes, and made the first measurements of their mechanical strength. Altogether our reconstitutions
have enabled us to make key discoveries in major areas of spindle function. By expanding our approach, we
can now attack the essence of many complex, long-standing problems in mitosis, in direct ways that would be
impossible in living cells. Over the next five years, we will focus on several important questions: (1) How do
kinetochores spontaneously self-assemble from their component parts? (2) How are forces transmitted from
the outer microtubule-binding interface through the middle of the kinetochore and ultimately to the centromeric
DNA? (3) How are dynamic behaviors at kinetochores and spindle poles affected by the forces they
experience? (4) How do kinetochores avoid making erroneous attachments? (5) How do unattached or
erroneously attached kinetochores generate ‘wait’ signals to delay the cell cycle? Our work will continue to use
the advanced, feedback-controlled laser traps that we pioneered for measuring kinetochore movement and
spindle pole mechanics. In addition, newly developed fluorescence techniques will allow us to observe
kinetochore assembly at the single molecule level and to monitor dynamic structural changes within individual
kinetochores. By combining laser trapping with fluorescence we will test directly how changes in the
composition and architecture of kinetochores and spindle poles affect their function.
项目概要
在细胞分裂过程中,复制的染色体被精密的分子机器(有丝分裂)分离
我们的目标是通过重构主轴活动并应用主轴来揭示该机器的运行方式。
用于操纵和跟踪单个分子的先进生物物理工具我们专注于组件。
对纺锤体功能、动粒、微管和动粒驱动至关重要。
通过微管尖端的持久、承重附着来维持染色体运动,即使
动粒在它们的抓握下组装和拆卸也会以某种方式感知。
错误地附着,如果是这样,它们会分离并产生可扩散的“等待”信号以延迟后期,直到
纺锤体微管被纺锤体组织成双极结构。
过去,两极还必须维持支持染色体运动和纺锤体组装的力。
工作中,我们开发了运动测定法,其中天然着丝粒或重组着丝粒亚复合物
与体内的动粒一样,分离的动粒颗粒附着在单个动态微管上。
即使微管尖端组装和分解,仍保持尖端结合——我们称之为“尖端耦合”的行为。
我们还重建了微管和纺锤体极体(酵母盟友)之间的附着物
中心体,并对其机械强度进行了首次测量。
通过扩展我们的方法,我们能够在主轴功能的主要领域取得重大发现。
现在可以直接解决有丝分裂中许多复杂的、长期存在的问题的本质
在接下来的五年里,我们将关注几个重要的问题:(1)如何做到这一点。
(2) 动粒从其组成部分自发地自组装?
外部微管结合界面穿过着丝粒中部并最终到达着丝粒
DNA?(3)动粒和纺锤极的动态行为如何受到它们的作用力的影响?
(4) 动粒如何避免错误的附着?
错误附着的动粒会产生“等待”信号来延迟细胞周期?
我们首创的先进的反馈控制激光陷阱用于测量动粒运动
此外,新开发的荧光技术将使我们能够观察。
在单分子水平上进行动粒组装并监测个体内的动态结构变化
通过将激光捕获与荧光相结合,我们将直接测试动粒的变化。
动粒和纺锤极的组成和结构影响它们的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES ASBURY其他文献
CHARLES ASBURY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES ASBURY', 18)}}的其他基金
Reconstitution and biophysical study of chromosome segregation machinery
染色体分离机制的重建和生物物理研究
- 批准号:
10326358 - 财政年份:2020
- 资助金额:
$ 65.74万 - 项目类别:
Reconstitution and biophysical study of chromosome segregation machinery
染色体分离机制的重建和生物物理研究
- 批准号:
10552592 - 财政年份:2020
- 资助金额:
$ 65.74万 - 项目类别:
Multicolor TIRF microscope for studying mitotic spindle components at the single
多色 TIRF 显微镜用于研究单次有丝分裂纺锤体成分
- 批准号:
7791455 - 财政年份:2010
- 资助金额:
$ 65.74万 - 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
- 批准号:
7186769 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
- 批准号:
7686858 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
- 批准号:
8728260 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
- 批准号:
8537931 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
- 批准号:
9103625 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
- 批准号:
8338863 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
- 批准号:
7923677 - 财政年份:2006
- 资助金额:
$ 65.74万 - 项目类别:
相似国自然基金
砂岩油藏高含水后期水激孔隙膨胀波提高采收率机理研究
- 批准号:52374059
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于碳氢键官能团化策略的复杂多肽后期修饰与多肽药物研发
- 批准号:22301167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞壁酸性转化酶cwINVs参与花粉发育后期糖代谢途径的机制研究
- 批准号:32300231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Cu催化的多肽脯氨酸残基的后期官能团化
- 批准号:22371307
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
南海西北部陆缘裂后期岩浆侵入体的时空发育特征、地层响应及其构造意义研究
- 批准号:42376070
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Ubiquitin signaling in epigenetic regulation of neuronal development
神经元发育表观遗传调控中的泛素信号传导
- 批准号:
10478055 - 财政年份:2021
- 资助金额:
$ 65.74万 - 项目类别:
Ubiquitin signaling in epigenetic regulation of neuronal development
神经元发育表观遗传调控中的泛素信号传导
- 批准号:
10251284 - 财政年份:2021
- 资助金额:
$ 65.74万 - 项目类别:
Functional analysis of mammalian midbody RNA in post-mitotic signaling functions
哺乳动物中间体 RNA 在有丝分裂后信号传导功能中的功能分析
- 批准号:
10297652 - 财政年份:2021
- 资助金额:
$ 65.74万 - 项目类别:
Ubiquitin signaling in epigenetic regulation of neuronal development
神经元发育表观遗传调控中的泛素信号传导
- 批准号:
10683762 - 财政年份:2021
- 资助金额:
$ 65.74万 - 项目类别:
Functional analysis of mammalian midbody RNA in post-mitotic signaling functions
哺乳动物中间体 RNA 在有丝分裂后信号传导功能中的功能分析
- 批准号:
10684068 - 财政年份:2021
- 资助金额:
$ 65.74万 - 项目类别: