Therapeutic cellular reprogramming in the adult mammalian inner ear by fetal gene transfer
通过胎儿基因转移对成年哺乳动物内耳进行治疗性细胞重编程
基本信息
- 批准号:10063987
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationActinsAction PotentialsAdoptedAdoptionAdultAffectAllelesAstrocytesAuditoryBiological ModelsBrainCell Differentiation processCellsChemicalsChickClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCodeComplementary DNAConfocal MicroscopyCre driverCrista ampullarisEnterobacteria phage P1 Cre recombinaseEpithelialEquilibriumEventExcisionFunctional disorderGFI1 geneGene DeliveryGene ExpressionGene TransferGenesGeneticGenetic RecombinationGenetic TranscriptionGoalsGreen Fluorescent ProteinsHSF1Hair CellsHearingHybridsIndividualInheritedInner Hair CellsLGR5 geneLabyrinthLocationMediatingMediator of activation proteinMicroinjectionsModelingMusNeonatalNeuronsOrgan of CortiOtic VesicleOuter Hair CellsParvalbuminsPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypePillar CellProteinsReagentRecombinantsRecovery of FunctionReporterSLC17A8 geneSensorySignal TransductionSiteSpecificityStructureSupporting CellSystemTamoxifenTestingTherapeuticTranscription CoactivatorTranscription Initiation SiteTranscriptional ActivationTransgenic OrganismsValidationWorkWorld Health Organizationadeno-associated viral vectoraqueousbeta Actincell typecostdeafnessdesigndiphtheria toxin receptordrug discoveryfetalgenetic elementgenetic manipulationhearing impairmenthearing preservationhuman modelin vivoinner ear diseasesinterestmaculamouse modelnew technologynovel therapeutic interventionp65postnatalpostsynapticpreservationpromoterprotein expressionresponsesocioeconomicsspiral gangliontargeted treatmenttherapeutic candidatetherapeutic genetranscription factortransduction efficiencytransgene expressionvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Hearing loss is the most common sensory deficit worldwide. Disabling hearing loss will affect an estimated 900
million individuals globally by 2050 at an annual cost of US$ 750 billion. There is compelling socioeconomic
rationale to devise novel therapeutic strategies to treat hereditary and non-hereditary forms of inner ear disease.
Mouse models of deafness and vestibular dysfunction are most commonly exploited to test gene and
pharmacotherapeutics designed to rescue sensory function. A widespread experimental approach is to deliver
genes or drugs to the functionally immature neonatal inner ears of mice that model human deafness and then
assess structural and functional recovery at mature stages. This work takes advantage of the plasticity of the
pre-hearing mammalian inner ear to accommodate microinjection of aqueous reagents without significantly
affecting acquisition of auditory or vestibular function. However, a pressing need is to define experimental
systems that model the responsivity of the adult inner ear to therapeutic genetic manipulation. The conceptual
basis of this proposal is that delivery of functionally silent genetic constructs to the fetal inner ear will enable
atraumatic activation in differentiated cell types of mature inner ear. We hypothesize that transuterine
microinjection of Cre recombinase-responsive genetic elements into the otic vesicle of mice harboring tamoxifen-
inducible alleles will permit control of the timing and cell type-specificity of therapeutic gene delivery without
compromising inner ear structure or function. Our long term goal is to verify where in the inner ear and when
specific genes must be modulated to restore or protect auditory function in models of hereditary and non-
hereditary hearing loss. In Aim 1, we will atraumatically deliver a chemically inducible genetic switch flanking
green fluorescent protein (GFP) to the fetal inner ear using a recombinant adeno-associated viral vector (rAAV)
and then pharmacologically trigger expression in the adult inner ear. We hypothesize that GFP expression will
be constrained to inner or outer hair cells, subsets of supporting cells in the organ of Corti, to vestibular
supporting cells in the cristae and maculae, and spiral ganglion neurons as predicated by relevant Cre driver
alleles. In Aim 2, we will deploy the genetic switch system to reprogram adult mouse supporting cells into hair
cells by conditional expression of the Pou4f3, Gfi1, and Atoh1 transcription factors. We hypothesize that
exogenous bioactive signals will be efficiently transmitted to supporting cells in the adult mouse inner ear. In Aim
3, we will use an inducible hybrid transcriptional activation system to reprogram supporting cells into hair cells.
We hypothesize that forced transcriptional activation of endogenous Pou4f3, Gfi1, and Atoh1 in adult mouse
supporting cells will induce a hair cell fate. Successful completion of our aims may establish a mouse model
system that enables in vivo validation of druggable genetic targets that can preserve hearing and balance in the
mature inner ear.
项目摘要/摘要
听力损失是全球最常见的感觉赤字。禁用听力损失将影响估计的900
到2050年,全球百万个人的年成本为7500亿美元。有令人信服的社会经济
制定新的治疗策略来治疗内耳疾病的遗传性和非遗传形式的理由。
耳聋和前庭功能障碍的小鼠模型最常用于测试基因和
旨在挽救感觉功能的药物治疗药。一种广泛的实验方法是交付
对人的耳聋的功能不成熟的新生儿内耳的基因或药物,然后
评估成熟阶段的结构和功能恢复。这项工作利用了
预见的哺乳动物内耳,可容纳水试剂的显着注射
影响听觉或前庭功能的获取。但是,紧迫的需求是定义实验
模拟成人内耳对治疗性遗传操作的反应性的系统。概念
该提议的基础是,将功能无声的遗传结构传递到胎儿内耳将启用
成熟内耳的分化细胞类型中的漫画激活。我们假设伸缩剂
将CRE重组酶反应性遗传元素的显微注射到具有他莫昔芬的小鼠的耳囊中
诱导等位基因将允许控制治疗基因递送的时间和细胞类型特异性
损害内耳的结构或功能。我们的长期目标是验证内耳的位置和何时
必须调节特定基因以恢复或保护遗传和非 -
遗传听力损失。在AIM 1中,我们将进行化学诱导的遗传开关侧翼
绿色荧光蛋白(GFP)使用重组腺相关病毒载体(RAAV)到胎儿内耳。
然后在成人内耳中触发药理触发表达。我们假设GFP表达将
受约束内毛细胞或外毛细胞,在Corti器官中支撑细胞的子集,前庭
由相关的CRE驱动器依据
等位基因。在AIM 2中,我们将部署遗传开关系统以将成年小鼠支撑细胞重新编程为头发
通过POU4F3,GFI1和ATOH1转录因子的条件表达的细胞。我们假设这一点
外源生物活性信号将有效地传播到成年小鼠内耳中的支撑细胞。目标
3,我们将使用诱导的杂交转录激活系统将支撑细胞重新编程为毛细胞。
我们假设成年小鼠中内源性POU4F3,GFI1和ATOH1的强迫转录激活
支持细胞会诱导毛细胞命运。成功完成我们的目标可能会建立鼠标模型
可以在体内验证可毒品的遗传靶标的系统
成熟的内耳。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN Vincent BRIGANDE其他文献
JOHN Vincent BRIGANDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN Vincent BRIGANDE', 18)}}的其他基金
Fetal gene therapy for congenital deafness and imbalance
针对先天性耳聋和失衡的胎儿基因治疗
- 批准号:
9807781 - 财政年份:2019
- 资助金额:
$ 19.25万 - 项目类别:
Fetal gene therapy for congenital deafness and imbalance
针对先天性耳聋和失衡的胎儿基因治疗
- 批准号:
10475412 - 财政年份:2019
- 资助金额:
$ 19.25万 - 项目类别:
Fetal gene therapy for congenital deafness and imbalance (Administrative Supplement)
针对先天性耳聋和失衡的胎儿基因治疗(行政补充)
- 批准号:
10023478 - 财政年份:2019
- 资助金额:
$ 19.25万 - 项目类别:
In utero protein transduction to interrogate inner ear sensory patch formation
子宫内蛋白质转导研究内耳感觉斑的形成
- 批准号:
8425964 - 财政年份:2012
- 资助金额:
$ 19.25万 - 项目类别:
In utero protein transduction to interrogate inner ear sensory patch formation
子宫内蛋白质转导研究内耳感觉斑的形成
- 批准号:
8586482 - 财政年份:2012
- 资助金额:
$ 19.25万 - 项目类别:
相似海外基金
Attenuating microglial-dependent axonal pathology in EAE
减轻 EAE 中小胶质细胞依赖性轴突病理学
- 批准号:
10455419 - 财政年份:2015
- 资助金额:
$ 19.25万 - 项目类别:
Attenuating microglial-dependent axonal pathology in EAE
减轻 EAE 中小胶质细胞依赖性轴突病理学
- 批准号:
9889586 - 财政年份:2015
- 资助金额:
$ 19.25万 - 项目类别:
Attenuating microglial-dependent axonal pathology in EAE
减轻 EAE 中小胶质细胞依赖性轴突病理学
- 批准号:
10620206 - 财政年份:2015
- 资助金额:
$ 19.25万 - 项目类别:
Arrhythmias in HCM Due to Mutation in cMyBP-C
cMyBP-C 突变导致 HCM 心律失常
- 批准号:
8134106 - 财政年份:2010
- 资助金额:
$ 19.25万 - 项目类别: