A familiar stress in an unfamiliar place: cell wall stressors and bacterial countermeasures in the cytosol
陌生地方的熟悉压力:细胞壁压力源和细胞质中的细菌对策
基本信息
- 批准号:10064166
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBindingBiochemicalBiochemical GeneticsBiological AssayCRISPR/Cas technologyCell WallCellsClustered Regularly Interspaced Short Palindromic RepeatsCombating Antibiotic Resistant BacteriaCytosolFaceFrancisellaGeneticGenetic ScreeningGenetic TechniquesGoalsGrowthGuanosine Triphosphate PhosphohydrolasesHomeostasisHost DefenseIn VitroInfectionIntegration Host FactorsInterferonsInterventionInvadedKnock-outLibrariesLightListeria monocytogenesMediatingMediator of activation proteinModelingMolecular TargetMonobactamsMorbidity - disease rateMuramidaseMutagenesisMycobacterium tuberculosisOrganismPathway interactionsPenicillin-Binding ProteinsPhagolysosomePharmacologyPhosphotransferasesPositioning AttributeProteinsProteomicsPublic HealthResistanceRoleSerineShigella flexneriSignal TransductionStaphylococcus aureusStressTechniquesTestingThreonineVirulenceWorkantimicrobialbasebeta-Lactamsbiological adaptation to stressemerging antibiotic resistanceexpectationextracellulargenetic approachgenome-widehuman pathogenin vivoinsightmacrophagemortalitymutantnovelnovel strategiespathogenpathogenic bacteriaphosphoproteomicsresponsesmall moleculestressortargeted treatmenttool
项目摘要
Project Summary
Antibiotic resistance in bacterial pathogens is quickly rendering current antibiotics obsolete; thus, there is a
need to discover additional molecular targets and develop novel strategies for treating bacterial infections. We
have previously determined that the important pathogen and powerful model Listeria monocytogenes (Lmo) is
rendered sensitive to cell wall stress in vitro, including that imposed by β-lactam antibiotics and host-derived
defenses such as lysozyme, upon genetic disruption or pharmacological inhibition of PrkA, a penicillin-binding
protein and serine/threonine-associated (PASTA) kinase. PASTA kinases are activated by disturbances in cell
wall homeostasis and mediate a stress response through largely unidentified phosphotargets and downstream
pathways. PrkA is also required for cytosolic survival of Lmo, suggesting Lmo faces cell wall stress in the host
cell cytosol. While the host cytosol is known to be restrictive to non-adapted bacteria, the cell autonomous
defenses (CADs) responsible for killing bacteria remain largely unidentified. In this proposal, we will test the
hypothesis that PrkA phosphosubstrates mediate cell wall stress responses important for cytosolic
survival and virulence using an orthogonal approach combining genetic and phosphoproteomic
analyses. Furthermore, we will test the hypothesis that the host elaborates cell wall-targeting defenses
against bacteria in the cytosol through a forward genetic screen and parallel untargeted proteomics
approach. Preliminary phosphoproteomic and genetic suppressor analyses of wild-type and ΔprkA Lmo during
β-lactam exposure in vitro revealed that PrkA phosphorylates ~50 proteins, including the broadly conserved
protein of unknown function IreB, during cell wall stress. However, the importance of IreB and other putative
PrkA substrates in the context of the cytosol remains unknown. In this proposal, I will elucidate the function of
IreB, assess its role in Lmo cytosolic survival, and test for functional conservation in other related organisms.
To comprehensively assess the role of PrkA in cytosolic stress responses, I will execute parallel ex vivo
phosphoproteomic analysis and in vivo suppressor selection to identify PrkA targets relevant during infection.
To identify CADs that kill non-adapted bacteria in the cytosol, I will use a genome-wide CRISPR/Cas9
mutagenesis screen and proteomic analysis of Lmo isolated from the cytosol of macrophages to identify host
factors that kill non-cytosol-adapted bacteria. Putative CADs will be validated through standard genetic
approaches, and initial functional characterization will be performed as necessary. Completion of the Aims
herein will provide insights into bacterial adaptations to cytosolic cell wall stress and will identify host factors
that kill maladapted bacteria in this compartment. These studies therefore have the potential to illuminate new
avenues for both pathogen- and host-directed therapies to combat antibiotic-resistant bacteria.
项目概要
细菌病原体的抗生素耐药性很快就会导致现有的抗生素过时;
我们需要发现更多的分子靶点并开发治疗细菌感染的新策略。
先前已确定重要的病原体和强大的模型单核细胞增生李斯特氏菌(Lmo)是
在体外对细胞壁应激敏感,包括β-内酰胺抗生素和宿主来源的应激
防御,例如溶菌酶,对 PrkA(一种青霉素结合剂)的遗传破坏或药理学抑制
蛋白质和丝氨酸/苏氨酸相关 (PASTA) 激酶由细胞干扰激活。
壁稳态并通过很大程度上未识别的磷酸靶标和下游介导应激反应
Lmo 的胞质存活也需要 PrkA,这表明 Lmo 在宿主中面临细胞壁应激。
虽然已知宿主细胞质对未适应的细菌具有限制性,但细胞具有自主性。
负责杀死细菌的防御机制(CAD)在很大程度上仍未确定。在本提案中,我们将测试这些防御机制。
PrkA 磷酸底物介导细胞壁应激反应的假设对细胞质很重要
使用遗传和磷酸蛋白质组学相结合的正交方法测定存活率和毒力
此外,我们将检验宿主精心设计细胞壁靶向防御的假设
通过正向遗传筛选和平行非靶向蛋白质组学对抗细胞质中的细菌
方法对野生型和 ΔprkA Lmo 进行初步磷酸化蛋白质组学和遗传抑制分析。
体外暴露 β-内酰胺表明 PrkA 磷酸化约 50 种蛋白质,包括广泛保守的蛋白质
IreB 的功能未知,但在细胞壁应激过程中 IreB 的重要性和其他假定的。
细胞质中的 PrkA 底物仍然未知,在本提案中,我将阐明 的功能。
IreB,评估其在 Lmo 胞质存活中的作用,并测试其他相关生物体中的功能保守性。
为了全面评估 PrkA 在胞质应激反应中的作用,我将进行平行的离体实验
磷酸蛋白质组分析和体内抑制因子选择,以确定感染期间相关的 PrkA 靶标。
为了识别杀死细胞质中非适应细菌的 CAD,我将使用全基因组 CRISPR/Cas9
从巨噬细胞胞浆中分离的 Lmo 进行诱变筛选和蛋白质组学分析以鉴定宿主
杀死非胞质适应细菌的因素将通过标准遗传进行验证。
方法,并根据需要进行初步功能表征。
本文将深入了解细菌对细胞质细胞壁应激的适应,并将确定宿主因素
因此,这些研究有可能揭示新的情况。
对抗抗生素耐药细菌的病原体和宿主定向疗法的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Kelliher其他文献
Jessica Kelliher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Kelliher', 18)}}的其他基金
A familiar stress in an unfamiliar place: cell wall stressors and bacterial countermeasures in the cytosol
陌生地方的熟悉压力:细胞壁压力源和细胞质中的细菌对策
- 批准号:
10228586 - 财政年份:2020
- 资助金额:
$ 6.49万 - 项目类别:
A familiar stress in an unfamiliar place: cell wall stressors and bacterial countermeasures in the cytosol
陌生地方的熟悉压力:细胞壁压力源和细胞质中的细菌对策
- 批准号:
10459301 - 财政年份:2020
- 资助金额:
$ 6.49万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于吲哚信号分子的低剂量抗生素混合暴露诱导细菌群体耐药性机制及调控
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于质谱的细菌耐药性快速检测和抗生素最小抑菌浓度快速测量
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于低浓度抗生素Hormesis效应的细菌耐药性前体机制及相关阻遏新方法的研究
- 批准号:21976137
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
胍基修饰的抗菌高分子与抗生素的协同效应及其对细菌耐药性的影响
- 批准号:81803481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Clostridioides difficile nucleobase scavenging in the competitive gut environment
竞争性肠道环境中艰难梭菌核碱基清除
- 批准号:
10677923 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
NLRP10 Inflamasome in Gram-positive Sepsis
革兰氏阳性脓毒症中的 NLRP10 炎性体
- 批准号:
10680214 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Mechanism of action of Dapsone in Mycobacterium leprae
氨苯砜对麻风分枝杆菌的作用机制
- 批准号:
10643361 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别: