Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
基本信息
- 批准号:10061636
- 负责人:
- 金额:$ 30.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureBehaviorBiochemical ReactionBiological AssayBiologyCalibrationCell Culture TechniquesCellsChemical StructureChemicalsChromatinChromatin FiberChromatin StructureComplementComplexComputer ModelsDNADataData SetDevelopmentDiseaseDoxycyclineEnzymesEpigenetic ProcessEquilibriumEventFeedbackFiberGene Expression ProfilingGenesGoalsGrainHeterochromatinIndividualInvestigationKnowledgeLanguageLentivirus VectorLifeMalignant NeoplasmsMeasuresMediatingMethodologyMethodsModelingMolecularMolecular ProfilingMolecular StructureMusPathogenesisPathway interactionsPhasePhysicsPhysiologicalProcessProductionProteinsRegenerative MedicineRegulatory ElementRepressionResearchResolutionRoleRunningSignal TransductionSirolimusStem cell pluripotencyStochastic ProcessesStructureSystemTechnologyTestingTimeTretinoinVisualizationWorkbasecancer therapychromosome conformation capturecomputational platformcomputerized toolsembryonic stem cellexperimental studygene repressionheterochromatin-specific nonhistone chromosomal protein HP-1improvedin vivoinduced pluripotent stem cellinsightinterestmechanical propertiesmethylation patternoverexpressionparticlephysical propertypromoterprotein protein interactionreal time monitoringrecruitresponsesimulationsmall hairpin RNAtemporal measurement
项目摘要
Abstract
Chemical, molecular and structural transformations of chromatin are intimately involved in critical cellular
phenomena, including differentiation, signaling, and pathogenesis. A detailed knowledge of how molecular
complexes involving multiple kilobases of DNA and hundreds of proteins respond to the finest changes in
chemical structure is key to elucidating the role of chromatin transformations in life and disease. The overarching
goal of this project is to develop and apply computational tools to investigate how the structure and dynamics of
chromatin determine its functional states. Our central hypothesis is that physical properties and behavior of the
chromatin fiber and associated proteins lend themselves to encoding into efficient and useful ultra-coarse-
grained (UCG) representations. Our strategy to reach the goal is by bridging together several computational and
experimental methodologies. We initiated the development of Molecular Biosystems (MB), a computational
platform for UCG simulations specifically adapted to the chromatin biology. MB methodology represents a blend
of physics-based mechanisms, such as dynamics of the chromatin fiber, with stochastic processes encompassing
protein-protein interactions and enzymatic reactions. MB studies will be complemented by all-atom MD and CG
simulations and experimentally tested using a unique chromatin in vivo assay (CiA) methodology.
Specifically, we will investigate the chromatin-mediated repression of Oct4, a key gene regulating embryonic
stem (ES) cell pluripotency at defined points in mammalian development. This is important because the ability
to reverse the Oct4 repression would streamline production of induced pluripotent cells (iPSC) and advance
regenerative medicine. The CiA technology at the Oct4 locus in mouse ES cells will be used for the exploration of
changes to chromatin structure, as well as for testing the adequacy of MB simulations. Experimental endpoints
that are directly comparable to computational hypotheses will be produced: (1) fraction of Oct4-repressed cells
in cell culture; (2) H3K9 methylation patterns on Oct4 promoter; and (3) chromatin conformation capture.
Three main components of our research are: (i) Extending and enhancing the UCG MB approach; (ii) Multi-
scale simulations of chromatin processes to elucidate the structure and dynamics of heterochromatin of Oct4
regulatory elements; (iii) Experimental real-time monitoring of heterochromatin molecular signatures using
Chromatin in vivo Assay (CiA) to study mechanisms and time course of Oct4 de-repression and provide feedback
for the computational models.
This work is important because of its focus on the physics of the gene repression, whose understanding will
bring us one step forward toward the promise of regenerative medicine and new prospects for cancer therapy.
抽象的
染色质的化学、分子和结构转变与关键的细胞密切相关
现象,包括分化、信号传导和发病机制。详细了解分子如何
涉及数千个 DNA 碱基和数百个蛋白质的复合物对最细微的变化做出反应
化学结构是阐明染色质转化在生命和疾病中的作用的关键。首要的
该项目的目标是开发和应用计算工具来研究结构和动力学如何
染色质决定其功能状态。我们的中心假设是物理特性和行为
染色质纤维和相关蛋白质有助于编码成有效且有用的超粗颗粒
粒度(UCG)表示。我们实现这一目标的策略是将多个计算和
实验方法。我们启动了分子生物系统 (MB) 的开发,这是一种计算
特别适合染色质生物学的 UCG 模拟平台。 MB 方法代表了一种混合
基于物理的机制,例如染色质纤维的动力学,其中随机过程包括
蛋白质-蛋白质相互作用和酶促反应。 MB 研究将得到全原子 MD 和 CG 的补充
使用独特的染色质体内测定 (CiA) 方法进行模拟和实验测试。
具体来说,我们将研究染色质介导的 Oct4 抑制,Oct4 是调节胚胎的关键基因。
哺乳动物发育过程中特定点的干细胞 (ES) 多能性。这很重要,因为能力
逆转 Oct4 抑制将简化诱导多能细胞 (iPSC) 的生产并推进
再生医学。小鼠 ES 细胞 Oct4 位点的 CiA 技术将用于探索
染色质结构的变化,以及测试 MB 模拟的充分性。实验终点
将产生可直接与计算假设进行比较的结果:(1) Oct4 抑制细胞的分数
在细胞培养中; (2)Oct4启动子上的H3K9甲基化模式; (3)染色质构象捕获。
我们研究的三个主要组成部分是: (i) 扩展和增强 UCG MB 方法; (ii) 多
染色质过程的规模模拟,以阐明 Oct4 异染色质的结构和动态
监管要素; (iii) 使用异染色质分子特征进行实验实时监测
染色质体内测定 (CiA),用于研究 Oct4 去抑制的机制和时间过程并提供反馈
对于计算模型。
这项工作很重要,因为它关注基因抑制的物理学,其理解将
使我们朝着再生医学的承诺和癌症治疗的新前景迈进了一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel A. Hathaway其他文献
Cavitation Enhancement Increases the E ffi ciency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications
空化增强提高了固定细胞染色质断裂的效率和一致性,用于下游定量应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Anna M. Chiarella;Austin L Quimby;Marjan Mehrab;Brian Velasco;S. Kasoji;Ian J. Davis;Paul A. Dayton;Nathaniel A. Hathaway;S. Pattenden - 通讯作者:
S. Pattenden
Nathaniel A. Hathaway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel A. Hathaway', 18)}}的其他基金
ILLUMINATION OF CHROMATIN REGULATION VIA CHEMICAL CONTROLLED PROXIMITY
通过化学控制的接近来阐明染色质调控
- 批准号:
10550480 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10453051 - 财政年份:2022
- 资助金额:
$ 30.42万 - 项目类别:
Chemically regulating AAV transgene expression with endogenous gene activators
使用内源基因激活剂化学调节 AAV 转基因表达
- 批准号:
10569596 - 财政年份:2022
- 资助金额:
$ 30.42万 - 项目类别:
Site-specific epigenetic activation of TP53 to improve cancer therapy
TP53 的位点特异性表观遗传激活可改善癌症治疗
- 批准号:
10258179 - 财政年份:2021
- 资助金额:
$ 30.42万 - 项目类别:
Chemically controlling chromatin to treat Friedriech's Ataxia
化学控制染色质治疗弗里德里希共济失调
- 批准号:
10009926 - 财政年份:2020
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
9885690 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10731977 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Computational and experimental insights into the structure and dynamics of heterochromatin
对异染色质结构和动力学的计算和实验见解
- 批准号:
10300059 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
9685606 - 财政年份:2017
- 资助金额:
$ 30.42万 - 项目类别:
MECHANISM OF HP1-MEDIATED HETEROCHROMATIN ASSEMBLY AND DURABILITY IN LIVE CELLS
HP1 介导的异染色质组装机制及其在活细胞中的耐久性
- 批准号:
10197949 - 财政年份:2017
- 资助金额:
$ 30.42万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别: