Preclinical development of breakthrough immunotherapy for brain tumors
脑肿瘤突破性免疫疗法的临床前开发
基本信息
- 批准号:10059272
- 负责人:
- 金额:$ 72.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdult GliomaAntigen TargetingAntigen-Presenting CellsAntigensAreaAwardBrainBrain NeoplasmsCellsChildhood GliomaCollaborationsCytotoxic T-LymphocytesDataEngineeringEnvironmentGliomaGoalsHomingImmuneImmune responseImmunologyImmunosuppressionImmunotherapeutic agentImmunotherapyLaboratoriesMalignant GliomaMalignant NeoplasmsMediatingNational Institute of Neurological Disorders and StrokeNormal CellOncolytic virusesPatientsReceptor CellResearchSignal TransductionSiteSystemT-Cell ReceptorTechnologyTissuesTumor Antigensbasechemokinechimeric antigen receptorchimeric antigen receptor T cellsflexibilityhigh riskimmunotherapy clinical trialslymphoid organneoantigensnew technologynotch proteinnovelpreclinical developmentpreclinical studysuccesstertiary lymphoid organtumortumor microenvironment
项目摘要
The ultimate success of immunotherapy for brain malignancies, such as malignant glioma, will require integration of in-depth understanding of immunology with solutions for the following long-standing challenges: 1) paucity and heterogeneous expression of glioma-specific antigens; 2) poor homing and persistence of effector cytotoxic T lymphocytes (CTLs); and 3) glioma-induced immunosuppression. My laboratory has been contributing to critical discoveries in each of these areas, and integrated our findings into novel immunotherapy clinical trials for glioma patients. In the current proposal, we will leverage our current research directions by combining our expertise on glioma antigens and cutting-edge cell-engineering technologies in preclinical studies. We hypothesize that integration of novel cell-engineering and antigen-targeting approaches will allow us to develop safer and more effective immunotherapy strategies by overcoming heterogeneous expression of antigens and unique challenges in brain immunology. We will evaluate the following strategies: 1. Novel glioma neoantigens for safe and effective immunotherapy. We will leverage our current NINDS awards (R01NS096954 and R21NS093654) and characterize T-cell receptors (TCRs) specific to neoantigens derived from both pediatric and adult gliomas. 2. Sequential chimeric antigen receptor (CAR)/TCR system for targeting multiple antigens. As a way to safely target glioma-associated antigens (GAAs) in the tumor microenvironment without damaging normal cells outside of the brain, we will evaluate the novel sequential Synthetic Notch (synNotch) CAR/TCR system, in which antigen signaling through the first CAR or TCR against a tumor-specific antigen induces the second, anti-GAA CAR/TCR to trigger the CTL activity at the tumor site. 3. Targeting the glioma immune environment by creating tertiary lymphoid organs (TLOs). The absence of lymphatic organs and professional antigen presenting cells are thought to be major reasons for insufficient immune responses in the brain. We will evaluate whether induction of TLOs in the brain tumor site will facilitate efficient and long-lasting glioma antigen-specific immune responses in the brain tumor site. These 3 strategies will be logically integrated into combination approaches. Novel antigens and TCRs will be adopted into the synNotch CAR/TCR system, and the TLO approach would also be most beneficial when combined with the synNotch CAR/TCR system. As expected per the purpose of the NINDS R35 mechanism, these strategies may involve high risks. However, based on our proof-of-principle preliminary data, we will persistently pursue our goals with the long-term support by the R35 mechanism, and flexibly and swiftly adopt new technologies. These studies will also integrate with other areas of ongoing studies in our lab. For example, oncolytic virus-mediated expression of target antigen and CTL-attracting chemokine (“payload” approaches) would help us to overcome the paucity and heterogeneous expression of antigens as well as tumor homing of CTLs to the glioma tissue. The R35 would allow these integrations.
免疫疗法对脑恶性肿瘤的最终成功,例如恶性神经胶质瘤,将需要对免疫学的深入了解与解决方案的深度理解,以应对以下长期存在的挑战:1)胶质瘤特异性抗原的稀疏和异质表达; 2)效应子细胞毒性T淋巴细胞(CTLS)的归因和持久性; 3)神经胶质瘤诱导的免疫抑制。我的实验室一直在为这些领域的每个领域中的关键发现做出贡献,并将我们的发现纳入了新型免疫疗法临床试验中,用于神经胶质瘤患者。在当前的建议中,我们将通过结合临床前研究中的胶质瘤抗原和尖端细胞工程技术的专业知识来利用当前的研究方向。我们假设新型细胞工程和抗原靶向方法的整合将使我们通过克服抗原的异质表达和脑免疫学中的独特挑战来制定更安全,更有效的免疫疗法策略。我们将评估以下策略:1。新型神经胶质瘤新抗原,以进行安全有效的免疫疗法。我们将利用当前的NINDS奖项(R01NS096954和R21NS093654),并表征针对来自儿科和成人神经胶质瘤的新抗原特异性的T细胞受体(TCRS)。 2。用于靶向多种抗原的顺序嵌合抗原受体(CAR)/TCR系统。 As a way to safely target glioma-associated antigens (GAAs) in the tumor microenvironment without damaging normal cells outside of the brain, we will evaluate the novel sequential Synthetic Notch (synNotch) CAR/TCR system, in which antigen signaling through the first CAR or TCR against a tumor-specific antigen induces the second, anti-GAA CAR/TCR to trigger the CTL activity at the tumor 地点。 3。通过创建三级淋巴机器人(TLOS)来靶向神经胶质瘤免疫环境。人们认为缺乏淋巴器官和专业抗原呈递细胞是大脑免疫复杂不足的主要原因。我们将评估脑肿瘤部位中TLO的诱导是否会促进脑肿瘤部位中有效且持久的胶质瘤抗原特异性免疫反应。这三种策略将在逻辑上集成到组合方法中。新型抗原和TCR将被采用到同步汽车/TCR系统中,与Synnotch CAR/TCR系统结合使用,TLO方法也将是最有益的。正如NINDS R35机制的目的所预期的那样,这些策略可能涉及高风险。但是,根据我们的原则初步数据证明,我们将通过R35机制的长期支持来持续实现目标,并灵活而迅速采用新技术。这些研究还将与我们实验室中正在进行的研究的其他领域集成。例如,溶瘤病毒介导的靶抗原和CTL趋化因子(“有效载荷”方法)的表达将有助于我们克服抗原的稀疏和异质表达,以及CTL的肿瘤归位为胶质瘤组织。 R35将允许这些集成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hideho Okada其他文献
Hideho Okada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hideho Okada', 18)}}的其他基金
Development of novel synNotch CART cell therapy in adult patients with recurrent EGFRvIII+ glioblastoma
开发新型 synNotch CART 细胞疗法治疗复发性 EGFRvIII 胶质母细胞瘤成人患者
- 批准号:
10305133 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
Development of novel synNotch CART cell therapy in adult patients with recurrent EGFRvIII+ glioblastoma
开发新型 synNotch CART 细胞疗法治疗复发性 EGFRvIII 胶质母细胞瘤成人患者
- 批准号:
10487528 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
Development of novel synNotch CART cell therapy in adult patients with recurrent EGFRvIII+ glioblastoma
开发新型 synNotch CART 细胞疗法治疗复发性 EGFRvIII 胶质母细胞瘤成人患者
- 批准号:
10689805 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
Glioma immunotherapy targeting IDH mutation-derived epitope and immunosuppression
针对 IDH 突变衍生表位和免疫抑制的胶质瘤免疫治疗
- 批准号:
10174862 - 财政年份:2018
- 资助金额:
$ 72.53万 - 项目类别:
Glioma immunotherapy targeting IDH mutation-derived epitope and immunosuppression
针对 IDH 突变衍生表位和免疫抑制的胶质瘤免疫治疗
- 批准号:
10436184 - 财政年份:2018
- 资助金额:
$ 72.53万 - 项目类别:
Preclinical development of breakthrough immunotherapy for brain tumors
脑肿瘤突破性免疫疗法的临床前开发
- 批准号:
10551829 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别:
Preclinical development of breakthrough immunotherapy for brain tumors
脑肿瘤突破性免疫疗法的临床前开发
- 批准号:
10632441 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别:
Preclinical development of breakthrough immunotherapy for brain tumors
脑肿瘤突破性免疫疗法的临床前开发
- 批准号:
10304142 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别:
Phase I Vaccine Study using Brain Tumor Initiating Cells in WHO Grade II Gliomas
使用 WHO II 级神经胶质瘤中的脑肿瘤起始细胞进行 I 期疫苗研究
- 批准号:
8754952 - 财政年份:2014
- 资助金额:
$ 72.53万 - 项目类别:
Novel adoptive transfer therapy for glioma using CAR-transduced Type17 T-cells
使用 CAR 转导的 17 型 T 细胞治疗神经胶质瘤的新型过继转移疗法
- 批准号:
8927697 - 财政年份:2014
- 资助金额:
$ 72.53万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the distinct roles of T cell-polarized microglia in glioblastoma suppression and progression
阐明 T 细胞极化小胶质细胞在胶质母细胞瘤抑制和进展中的独特作用
- 批准号:
10752583 - 财政年份:2023
- 资助金额:
$ 72.53万 - 项目类别:
OPTimIzing engageMent in discovery of molecular evolution of low grade glioma (OPTIMUM)
优化低级别神经胶质瘤分子进化发现的参与(OPTIMUM)
- 批准号:
10294462 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
OPTimIzing engageMent in discovery of molecular evolution of low grade glioma (OPTIMUM)
优化低级别神经胶质瘤分子进化发现的参与(OPTIMUM)
- 批准号:
10491794 - 财政年份:2021
- 资助金额:
$ 72.53万 - 项目类别:
UNDERSTANDING THE INTERACTIONS BETWEEN GERMLINE AND SOMATIC ALTERATIONS in the PATHOGENESIS OF GLIOMAS
了解胶质瘤发病机制中种系和体细胞改变之间的相互作用
- 批准号:
10625788 - 财政年份:2018
- 资助金额:
$ 72.53万 - 项目类别:
Preclinical development of breakthrough immunotherapy for brain tumors
脑肿瘤突破性免疫疗法的临床前开发
- 批准号:
10551829 - 财政年份:2017
- 资助金额:
$ 72.53万 - 项目类别: