Improving Critical Congenital Heart Disease Screening and Detection of "Secondary" Targets
改善危重先天性心脏病筛查和“次要”目标检测
基本信息
- 批准号:10018507
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmerican Heart AssociationAortic coarctationAutomatic Data ProcessingBloodBlood CirculationBlood PressureBlood flowCaliforniaCardiacCaringCessation of lifeCharacteristicsChildhoodClinicalCollaborationsCongenital AbnormalityCritical Congenital Heart DefectsCritical IllnessDataDefectDetectionDiagnosisEarly DiagnosisEngineeringEquipmentEvaluationFundingFutureGoalsIndividualInfantInfrastructureInterruptionInterventionLesionLower ExtremityMachine LearningMeasurementMeasuresMethodsMorbidity - disease rateMulticenter StudiesNational Heart, Lung, and Blood InstituteNational Institute of Child Health and Human DevelopmentNeonatal ScreeningNew YorkNewborn InfantObstructionOxygenPerfusionPhysiologic pulsePopulationProcessPulsatile FlowPulse OximetryResearchSavingsScreening ResultScreening procedureSensitivity and SpecificitySpecificityTechniquesTestingTimeUltrasonographyUnited StatesUpper ExtremityValidationaortic archautomated algorithmbaseclinical applicationcohortcomputer sciencecongenital heart disorderhigh rewardhigh riskhuman errorimprovedindexinginfant deathinnovationinterdisciplinary approachmembermortalitymultidisciplinaryneonatal periodnovelprenatalpreventscreeningsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
We propose to develop an automated critical congenital heart disease (CCHD) screening algorithm
using machine learning techniques to combine non-invasive measurements of perfusion and oxygenation.
Oxygen saturation (SpO2)-based screening is the current standard for CCHD screening, however it fails to
detect up to 50% of asymptomatic newborns with CCHD or nearly 900 newborns in the United States annually.
The majority of newborns missed by SpO2 screening have defects with aortic obstruction, such as coarctation
of the aorta (CoA), that do not result in deoxygenated blood entering circulation. Non-invasive measurements
of perfusion such as perfusion index (PIx) and pulse oximetry waveform analysis is expected to improve the
detection of newborns with defects such as CoA, which is currently the most commonly missed CCHD by SpO2
screening. Both PIx and pulse oximetry waveforms can be measured non-invasively and with the same
equipment used for SpO2 screening.
Members of our team recently showed that the addition of PIx, a non-invasive measurement of pulsatile
blood flow, has the potential to improve CCHD detection otherwise missed by SpO2 screening. However,
variability of PIx over brief time periods (seconds) and human error in its interpretation limit its clinical
capabilities. Additionally, human error in interpretation of the current SpO2 screening algorithm leads to missed
diagnoses and inappropriate testing in healthy newborns. Therefore, an automated SpO2-PIx screening
algorithm is needed to both simplify the screening process, and improve detection of defects that are missed
with SpO2 screening. In order to achieve that, we will identify the optimal PIx waveforms to create a metric that
discriminates between newborns with and without CCHD. We will perform pulse oximetry waveform analysis to
identify other non-invasive components with discriminatory capacity for newborns with CCHD. Additionally, we
will apply supervised machine learning techniques to automate the algorithm interpretation.
The proposed research is significant because an automated SpO2-PIx screening algorithm could save
the lives of hundreds of newborns with CCHD that are not diagnosed by SpO2 screening. Additionally, this is
innovative as it will be the first automatic interpretation of PIx measurement among newborns with CCHD and
merging of automated PIx and SpO2, which will allow for easy implementation at later steps. Through
collaboration with four pediatric cardiac centers, we will establish the infrastructure and necessary
multidisciplinary relationships to conduct future multicenter studies to evaluate this novel combined SpO2-PIx
algorithm on a large scale involving thousands of newborns. Improving the detection of CCHD will require a
multidisciplinary approach among all the individuals involved in the care and screening of newborns with
CCHD. Additionally, collaboration with engineering and computer sciences will be necessary to automate the
SpO2-PIx CCHD screening algorithm.
项目摘要/摘要
我们建议开发自动关键先天性心脏病(CCHD)筛查算法
使用机器学习技术结合灌注和氧合的非侵入性测量。
基于氧饱和(SPO2)的筛选是CCHD筛选的当前标准,但是它未能
每年在美国发现多达50%的无症状新生儿或近900名新生儿。
SPO2筛查错过的大多数新生儿都患有主动脉阻塞的缺陷,例如缩短
主动脉(COA),不会导致血液进入循环。非侵入性测量
预计灌注索引(PIX)和脉搏血氧仪波形分析将改善
检测具有COA等缺陷的新生儿,这是SPO2最常见的CCHD
筛选。 Pix和Pulse Oximetry波形都可以非侵入性地测量,并且相同
用于SPO2筛选的设备。
我们团队的成员最近表明,添加pix是脉冲的非侵入性测量
血流有可能改善SPO2筛选遗漏的CCHD检测。然而,
pix在短时间内(秒)和解释中的人为错误的变异性限制了其临床
功能。另外,当前SPO2筛选算法解释中的人为错误导致错过
健康新生儿的诊断和不适当的测试。因此,自动SPO2-PIX筛选
需要算法来简化筛选过程,并改善遗漏的缺陷检测
使用SPO2筛选。为了实现这一目标,我们将确定最佳pix波形,以创建一个指标
区分有和没有CCHD的新生儿。我们将执行脉搏血氧仪波形分析
通过CCHD确定具有新生儿歧视能力的其他非侵入性成分。另外,我们
将应用监督的机器学习技术来自动化算法解释。
拟议的研究很重要,因为自动化的SPO2-PIX筛选算法可以节省
尚未通过SPO2筛查诊断的数百名具有CCHD的新生儿的生活。另外,这是
创新性,因为它将是对新生儿中CCHD和CCHD和
合并自动PIX和SPO2,这将允许在以后的步骤中轻松实现。通过
与四个儿科心脏中心合作,我们将建立基础设施和必要
多学科关系以进行未来的多中心研究来评估这一新型SPO2幼犬
大规模的算法涉及数千名新生儿。改进CCHD的检测将需要
所有参与新生儿护理和筛查的人之间的多学科方法
CCHD。此外,必须与工程和计算机科学合作以自动化
SPO2-PIX CCHD筛选算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather M Siefkes其他文献
Heather M Siefkes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather M Siefkes', 18)}}的其他基金
Machine Learning for CCHD Screening using Dynamic Data
使用动态数据进行 CCHD 筛查的机器学习
- 批准号:
10588951 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Racial Disparities in Accuracy of Pulse Oximetry
脉搏血氧饱和度准确性的种族差异
- 批准号:
10451087 - 财政年份:2022
- 资助金额:
$ 19.22万 - 项目类别:
Racial Disparities in Accuracy of Pulse Oximetry
脉搏血氧饱和度准确性的种族差异
- 批准号:
10579316 - 财政年份:2022
- 资助金额:
$ 19.22万 - 项目类别:
Improving Critical Congenital Heart Disease Screening and Detection of "Secondary" Targets
改善危重先天性心脏病筛查和“次要”目标检测
- 批准号:
9805011 - 财政年份:2019
- 资助金额:
$ 19.22万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 19.22万 - 项目类别:
Dance4Healing: a feasibility study to reduce health disparity and increase engagement of an intergenerational telehealth program for minority diabetes patients and their care partners.
Dance4Healing:一项可行性研究,旨在减少少数族裔糖尿病患者及其护理伙伴的健康差距并提高代际远程医疗计划的参与度。
- 批准号:
10604415 - 财政年份:2022
- 资助金额:
$ 19.22万 - 项目类别:
Investigation of Heart and Vascular Outcomes in Older Veterans
老年退伍军人心脏和血管结局的调查
- 批准号:
10618301 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别:
Predicting and Preventing Chemotherapy-Induced Cardiotoxicity in African American Children
预测和预防非裔美国儿童化疗引起的心脏毒性
- 批准号:
10462680 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别:
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别: