Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
基本信息
- 批准号:10044077
- 负责人:
- 金额:$ 46.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccelerometerAddressAdultAffectAffectiveAlgorithmsAnorexia NervosaAnxietyBehaviorBehavior DisordersBehavioralBehavioral SymptomsBinge EatingBulimiaCellular PhoneChronicClinicalCognitionCognitiveCognitive TherapyDataData CollectionDevelopmentDiagnosisDisease remissionEating DisordersEpilepsyEvidence based treatmentFrightFutureGoalsGoldHealth PersonnelHeart RateIndividualIndividual DifferencesInterruptionInterventionLeadMachine LearningMaintenanceMental disordersMethodsModelingOutcomePathway AnalysisPathway interactionsPatient Self-ReportPatientsPatternPersonsPhysiologicalPhysiologyPrecision Medicine InitiativeProceduresPsychiatryPsychopathologyPsychotherapyRecoveryRelapseResearchScienceSeizuresSignal TransductionStructureSymptomsSystemTechniquesTechnologyTestingTimeUnited States National Institutes of HealthVariantWeight GainWorkbaseeffective therapyfollow-upfood restrictioninnovationmobile computingmortalitynoveloutcome forecastpersonalized interventionpersonalized medicineprediction algorithmpreventpsychologicpublic health relevancepurgerecruitresponsesensorsensor technologysevere mental illnesssmartphone Applicationstandard caretargeted treatmenttheoriestreatment planningwearable sensor technology
项目摘要
PROJECT SUMMARY/ABSTRACT
Eating disorders (EDs) are severe mental illnesses with the highest mortality rate of any
psychiatric disorder. The most widely used empirically supported treatment for EDs (cognitive
behavior therapy) is only efficacious for ~50% of individuals. This low response rate is due to
the fact that EDs are heterogeneous conditions with diverse symptom trajectories that are not
adequately addressed in current “one-size-fits-all” psychotherapies. Until we can identify what
maintains or exacerbates individual symptoms, clinicians will continue to have difficulty
accurately predicting prognosis and will have no empirical guidance to develop targeted
treatment plans to promote recovery. Our scientific premise, developed from our past work, is
that the application of network theory will enable the identification of cognitive-behavioral
symptom networks that maintain and ‘trigger’ EDs both between and within individuals. Our
study goals are to (1) identify individual ED ‘trigger’ symptoms (cognitions, behaviors, affect,
and physiology) and (2) correlate trigger symptoms with real-time physiological data to create
an algorithm predicting onset of ED behaviors. These goals will ultimately identify symptoms
that prevent full remission and lead to relapse. We will use a multiple units of analysis approach
combined with novel, cutting-edge advances in network science. We will collect intensive real-
time data on cognitions, behavior, affect, and physiology using mobile and sensor-technology
from 120 individuals with a diagnosis of anorexia nervosa (AN), atypical AN, and bulimia
nervosa across 30 days. At 1-month and 6-month follow ups we will assess ED outcomes (e.g.,
remission status, ED behaviors) to test if ‘trigger’ symptoms predict ED outcomes. Network
science and state-of-the-art machine learning techniques will allow us, for the first time, to
discover whether certain trigger symptoms predict worse outcomes. Specific aims are to (1)
develop personalized networks to identify which cognitive, behavioral, affective, and
physiological symptoms maintain EDs and predict ED outcomes and (2) utilize sensor data to
identify physiological patterns both within and across people that correlate with core maintaining
symptoms and that predict ED behaviors. The proposed research uses highly innovative
methods, combining intensive longitudinal data collection methods, all remote procedures, novel
advances in network science and sensor-technology, and state-of-the-art machine learning
techniques to answer previously unresolvable questions pinpointing which personalized
symptoms trigger EDs. The proposed research has clinical impact. If we identify patterns that
contribute to symptom network variation within individuals, these data will provide a model of
personalized medicine for the entire field of psychiatry, as well as providing novel intervention
targets to prevent and treat EDs.
项目概要/摘要
饮食失调 (ED) 是一种严重的精神疾病,其死亡率是所有疾病中最高的。
精神疾病最广泛使用的经验支持治疗(认知障碍)。
行为疗法)仅对约 50% 的个体有效。
事实上,ED 是一种异质性疾病,具有不同的症状轨迹,
在当前的“一刀切”心理治疗中得到充分解决,直到我们能够确定什么。
个体症状持续或恶化,蜂群将继续面临困难
准确预测预后,并且没有经验指导来制定有针对性的
我们的科学前提是根据我们过去的工作制定的。
网络理论的应用将能够识别认知行为
维持和“触发”个体之间和个体内部的 ED 的症状网络。
研究目标是 (1) 识别个体 ED“触发”症状(认知、行为、情感、
(2) 将触发症状与实时生理数据相关联,以创建
预测 ED 行为发作的算法最终将识别症状。
我们将使用多单元分析方法
结合网络科学的新颖、前沿进展,我们将收集大量的真实信息。
使用移动和传感器技术获取有关认知、行为、情感和生理的时间数据
来自 120 名被诊断为神经性厌食症 (AN)、非典型 AN 和贪食症的个体
在 1 个月和 6 个月的随访中,我们将评估 ED 的结果(例如,
缓解状态、ED 行为)来测试“触发”症状是否可以预测 ED 结果网络。
科学和最先进的机器学习技术将使我们第一次能够
发现某些触发症状是否预示着更糟糕的结果。具体目标是 (1)
开发个性化网络来识别哪些认知、行为、情感和
生理症状维持 ED 并预测 ED 结果,并且 (2) 利用传感器数据
识别与核心维持相关的人体内和人之间的生理模式
所提出的研究采用了高度创新的方法。
方法,结合密集的纵向数据收集方法,所有远程程序,新颖
网络科学和传感器技术的进步以及最先进的机器学习
回答以前无法解决的问题的技术,确定哪些是个性化的
如果我们确定了症状触发 ED 的模式,那么拟议的研究就会产生临床影响。
有助于个体内的症状网络变异,这些数据将提供一个模型
为整个精神病学领域提供个性化医疗,并提供新颖的干预措施
预防和治疗 ED 的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheri Alicia Levinson其他文献
Cheri Alicia Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
- 批准号:
10731597 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
- 批准号:
10652078 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10425019 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
- 批准号:
10611448 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10612256 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10579874 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
- 批准号:
10372099 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10542414 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
- 批准号:
10347759 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
- 批准号:42311530062
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
石英振梁加速度计稳定性漂移机理及其亚μg级调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
The Pacific Aging and Cancer Studies (PACS): An Infrastructure Advancing the Use of Digital Biomarkers and Related Technologies for Research on Functional Aging and Survivorship in Cancer
太平洋老龄化与癌症研究 (PACS):促进使用数字生物标志物和相关技术进行癌症功能性衰老和生存研究的基础设施
- 批准号:
10648477 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
PATIENT-TAILORED PHYSICAL ACTIVITY INTERVENTION AMONG OLDER WOMEN WITH GYNECOLOGIC CANCERS UNDERGOING CHEMOTHERAPY (FIT4TREATMENT)
针对接受化疗的患有妇科癌症的老年女性进行量身定制的身体活动干预 (FIT4Treatment)
- 批准号:
10635366 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
- 批准号:
10657828 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
- 批准号:
10726175 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别: