m6A mRNA modifications and myogenesis

m6A mRNA 修饰和肌生成

基本信息

  • 批准号:
    10013127
  • 负责人:
  • 金额:
    $ 16.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-09 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA and long noncoding RNAs. m6A is induced by the Mettl3 complex most commonly near stop codons and 3’ UTRs in mRNAs. m6A recruits the YTH domain family of m6A-binding proteins, which then control almost every aspect of RNA metabolism, including alternative splicing, nuclear export, stability, and translation. Several thousand mRNA regions are modified by m6A in a given cell population, primarily at the consensus sequence of DRACH (D=A, G, or U; R=A or G; H=A, C, or U). Reflecting the diverse molecular functions of m6A, it also regulates a wide range of biological phenomena, such as cancer cell proliferation, neural development, and pluripotent stem cell differentiation. However, the roles of m6A in muscle cell differentiation remain largely elusive. The PI’s group recently found that one of the Fkbp family member of peptidyl prolyl isomerases interacts with the Mettl3 complex. In addition, depletion of the Fkbp inhibited myoblast differentiation and decreased the total level of m6A in the cells, both of which were recapitulated by Mettl3 depletion. At a molecular level, the Fkbp promotes cis-trans isomerization of Mettl3 and its related protein Mettl14 in vitro. Based on these findings, they hypothesized that the Fkbp regulates the m6A level of myoblast mRNAs through isomerization of Mettl3 and Mettl14. Three aims were proposed to investigate this hypothesis. Aim 1 will determine genome-wide distribution of m6A in myoblasts at a single nucleotide level and study how the pattern changes by depletion of the Fkbp. Aim 2 will characterize how m6A affects metabolism of several most abundantly modified myoblast-specific mRNAs. Aim 3 will study how Fkbp8 regulates Mettl3 and Mettl14, focusing on phosphorylation and isomerization of the proteins. These studies are expected to lay a solid foundation for a future study of the roles of m6A in muscle cells.
项目概要 N6-甲基腺苷 (m6A) 是真核 mRNA 和长非编码最丰富的内部修饰 RNA 是由 Mettl3 复合物诱导的,最常见的是 mRNA 中的终止密码子和 3’UTR。 招募 m6A 结合蛋白的 YTH 结构域家族,然后控制 RNA 的几乎各个方面 代谢,包括选择性剪接、核输出、稳定性和翻译。 在给定的细胞群中,区域被 m6A 修饰,主要是在 DRACH 的共有序列处(D=A, G,或U;R=A或G;H=A,C,或U)。 一系列生物现象,例如癌细胞增殖、神经发育和多能干细胞 然而,m6A 在肌肉细胞分化中的作用在很大程度上仍然难以捉摸。 最近发现肽基脯氨酰异构酶的 Fkbp 家族成员之一与 Mettl3 复合物相互作用。 此外,Fkbp 的缺失抑制了成肌细胞分化并降低了 m6A 的总水平。 细胞,这两种细胞均通过 Mettl3 耗竭进行概括。在分子水平上,Fkbp 促进顺反式。 基于这些发现,他们发现了 Mettl3 及其相关蛋白 Mettl14 的体外异构化。 Fkbp 通过 Mettl3 和 Mettl14 的异构化调节成肌细胞 mRNA 的 m6A 水平 三个目标。 建议研究这一假设,目标 1 将确定成肌细胞中 m6A 的全基因组分布。 在单核苷酸水平上进行分析,并研究 Fkbp 耗尽后模式如何变化。 Aim 3 将研究 m6A 如何影响几种修饰最丰富的成肌细胞特异性 mRNA 的代谢。 Fkbp8 如何调节 Mettl3 和 Mettl14,重点关注蛋白质的磷酸化和异构化。 研究预计将为未来研究 m6A 在肌肉细胞中的作用奠定坚实的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nobuaki Kikyo其他文献

Nobuaki Kikyo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nobuaki Kikyo', 18)}}的其他基金

RNA methylation and mesenchymal stem cell differentiation
RNA甲基化与间充质干细胞分化
  • 批准号:
    10549380
  • 财政年份:
    2020
  • 资助金额:
    $ 16.94万
  • 项目类别:
RNA methylation and mesenchymal stem cell differentiation
RNA甲基化与间充质干细胞分化
  • 批准号:
    10331032
  • 财政年份:
    2020
  • 资助金额:
    $ 16.94万
  • 项目类别:
Regulation of hypoxic response by HIF isomerization
HIF 异构化调节缺氧反应
  • 批准号:
    9813473
  • 财政年份:
    2019
  • 资助金额:
    $ 16.94万
  • 项目类别:
Transcriptional elongation and long noncoding RNA
转录延伸和长非编码RNA
  • 批准号:
    9226044
  • 财政年份:
    2016
  • 资助金额:
    $ 16.94万
  • 项目类别:
Transcriptional elongation and long noncoding RNA
转录延伸和长非编码RNA
  • 批准号:
    9111196
  • 财政年份:
    2016
  • 资助金额:
    $ 16.94万
  • 项目类别:
Hypoxia and long noncoding RNA
缺氧和长非编码RNA
  • 批准号:
    8752852
  • 财政年份:
    2014
  • 资助金额:
    $ 16.94万
  • 项目类别:
Hypoxia and long noncoding RNA
缺氧和长非编码RNA
  • 批准号:
    8883446
  • 财政年份:
    2014
  • 资助金额:
    $ 16.94万
  • 项目类别:
Histone isomerization and pluripotency
组蛋白异构化和多能性
  • 批准号:
    8291578
  • 财政年份:
    2012
  • 资助金额:
    $ 16.94万
  • 项目类别:
Histone isomerization and pluripotency
组蛋白异构化和多能性
  • 批准号:
    8678949
  • 财政年份:
    2012
  • 资助金额:
    $ 16.94万
  • 项目类别:
Histone proline isomerization and gene regulation
组蛋白脯氨酸异构化和基因调控
  • 批准号:
    7566297
  • 财政年份:
    2009
  • 资助金额:
    $ 16.94万
  • 项目类别:

相似海外基金

Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 16.94万
  • 项目类别:
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    $ 16.94万
  • 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 16.94万
  • 项目类别:
Glia Exclusive Gene Therapy
胶质细胞独家基因疗法
  • 批准号:
    10739502
  • 财政年份:
    2023
  • 资助金额:
    $ 16.94万
  • 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
  • 批准号:
    10814079
  • 财政年份:
    2023
  • 资助金额:
    $ 16.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了