Neural mechanisms underlying the computation of depth from motion parallax
根据运动视差计算深度的神经机制
基本信息
- 批准号:10047000
- 负责人:
- 金额:$ 43.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmblyopiaAreaBehavioralBrainCerebellar vermis structureClutteringsComplexDataDepth PerceptionDevelopmentDiagnosisDisorientationEnvironmentEyeEye MovementsFunctional disorderGoalsImageImpairmentInvestigationJudgmentLearningMacacaMotionMotion PerceptionMovementNational Eye InstituteNeuronsOcular ProsthesisOutcome StudyPatientsPatternPerceptionPositioning AttributePrimatesProcessProxyPsychophysicsResearchResearch PriorityRetinaRoleRotationSensorySignal TransductionSourceStrabismusStudentsSystemTechnical ExpertiseTechniquesTranscranial magnetic stimulationTranslatingTranslationsVisionVisualVisual AcuityVisual MotionVisual system structureWorkarea MTexperimental studyfovea centralisfrontal eye fieldsinterestmillisecondmotor controlnervous system disorderneural networkneuromechanismneurophysiologyneurotransmissionnormal agingobject motionobject perceptionoculomotorpreservationprogramsrelating to nervous systemrestorationretinal imagingsample fixationundergraduate studentvisual informationvisual processing
项目摘要
Vision is an active process, and we frequently move our eyes to track targets of interest as we
ourselves move. While useful for maintaining the fovea on a target, these 'pursuit' eye movements add
global patterns of motion to the retinal image. Thus, to compute the motion or depth of objects in the
world, our visual system must account for the image motion added by eye rotations. The standard view
is that signals other than retinal image motion, such as efference copy of pursuit command signals,
must be used to compensate for eye rotations. In this view, one would subtract off the visual motion
resulting from eye rotation such that the remainder conveys information about motion of objects in the
world. The present project assesses an alternative view, that the visual system uses this internal eye
movement signal as a proxy for information about self-motion in relation to the point of fixation. More
specifically, for Aim 1, we propose to use non-invasive brain stimulation (TMS) to investigate whether
extra-retinal signals generated by the frontal eye fields (FEF) are necessary for the perception of depth
from motion parallax. If TMS disruption of FEF processing is deleterious to the perception of depth from
motion parallax, this would indicate that FEF is the source of the internal pursuit signal and is therefore
part of the neural processing mechanism for the perception of motion. Alternatively, if TMS disruption of
FEF does not affect the perception of depth from motion, this would suggest that the visual system
instead relies on an earlier sensory foveal motion signal, the specific signal that elicits or drives the
pursuit initiation signal, in the neural computation of depth from motion parallax. Aim 2 proposes to use
TMS to assess the role of two additional brain areas in the computation of depth from motion parallax:
visual area Middle Temporal (MT) and the Cerebellar Vermis. Both of these areas have been implicated
in the perception of object motion, and are uniquely positioned to integrate the motion-related and
extra-retinal pursuit signals needed to compute depth from motion parallax. However, their role in depth
perception, and in particular in the computation of depth from motion parallax, remains unclear. If TMS
of either area disrupts depth judgments, this would suggest a role in processing the extra-retinal pursuit
signal generated by the FEF. Our previous work has made important advances in understanding the
theoretical, psychophysical, and neurophysiological mechanisms of computing depth from motion
parallax. The proposed project extends these investigations by directly assessing the role of the FEF,
MT, and vermis in the computation of depth from motion parallax.
视觉是一个主动的过程,我们在观察时经常移动眼睛来追踪感兴趣的目标
我们自己移动。虽然对于将中央凹保持在目标上很有用,但这些“追踪”眼球运动增加了
视网膜图像的全局运动模式。因此,要计算物体的运动或深度
世界上,我们的视觉系统必须考虑眼睛旋转所增加的图像运动。标准视图
是除视网膜图像运动之外的信号,例如追踪命令信号的有效副本,
必须用于补偿眼睛旋转。在这种观点中,人们会减去视觉运动
眼睛旋转产生的结果,使得余数传达有关物体运动的信息
世界。本项目评估了另一种观点,即视觉系统使用这种内眼
运动信号作为与注视点相关的自我运动信息的代理。更多的
具体来说,对于目标 1,我们建议使用非侵入性脑刺激 (TMS) 来研究是否
额叶视野 (FEF) 生成的视网膜外信号对于深度感知是必要的
来自运动视差。如果 FEF 处理的 TMS 中断对深度感知有害
运动视差,这表明 FEF 是内部追踪信号的来源,因此
运动感知神经处理机制的一部分。或者,如果 TMS 中断
FEF 不会影响运动深度的感知,这表明视觉系统
相反,依赖于早期的感觉中央凹运动信号,即引发或驱动
追踪起始信号,在运动视差深度的神经计算中。目标 2 建议使用
TMS 评估两个额外大脑区域在运动视差深度计算中的作用:
视觉区域中颞叶 (MT) 和小脑蚓部。这两个领域都受到牵连
在物体运动的感知中,并且具有独特的定位来整合与运动相关的和
根据运动视差计算深度所需的视网膜外追踪信号。然而,他们的作用深入
感知,特别是在运动视差的深度计算中,仍然不清楚。如果经颅磁刺激
任一区域都会扰乱深度判断,这表明在处理视网膜外追踪中发挥作用
FEF 生成的信号。我们之前的工作在理解
从运动计算深度的理论、心理物理学和神经生理学机制
视差。拟议项目通过直接评估 FEF 的作用来扩展这些调查,
MT 和蚓部用于计算运动视差的深度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Nawrot其他文献
Mark Nawrot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Nawrot', 18)}}的其他基金
TESTING A QUANTITATIVE MODEL FOR THE PERCEPTION OF DEPTH FROM MOTION PARALLAX
测试运动视差深度感知的定量模型
- 批准号:
8360675 - 财政年份:2011
- 资助金额:
$ 43.5万 - 项目类别:
EYE MOVEMENTS IN THE PERCEPTION OF DEPTH FROM MOTION
眼睛运动对运动深度的感知
- 批准号:
2842747 - 财政年份:1999
- 资助金额:
$ 43.5万 - 项目类别:
EYE MOVEMENTS IN THE PERCEPTION OF DEPTH FROM MOTION
眼睛运动对运动深度的感知
- 批准号:
6179892 - 财政年份:1999
- 资助金额:
$ 43.5万 - 项目类别:
EYE MOVEMENTS IN THE PERCEPTION OF DEPTH FROM MOTION
眼睛运动对运动深度的感知
- 批准号:
6524966 - 财政年份:1999
- 资助金额:
$ 43.5万 - 项目类别:
EYE MOVEMENTS IN THE PERCEPTION OF DEPTH FROM MOTION
眼睛运动对运动深度的感知
- 批准号:
6384807 - 财政年份:1999
- 资助金额:
$ 43.5万 - 项目类别:
相似国自然基金
单细胞膜片钳测序解析Vip神经元影响弱视形成的关键调控机制
- 批准号:82301254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AI分析的EEG信号与外周血血浆蛋白标记物检测技术在形觉剥夺性弱视可塑性诱导个体化差异中的应用研究
- 批准号:82371088
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
弱视觉场景下建筑数字孪生和语义图协同的室内视觉定位研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
多通道Patch-seq探究视皮层PVALB神经元在弱视中的生理和分子机制
- 批准号:82201231
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
由上至下的注意调控对成年弱视的视功能重塑机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
The Influence of the Pretectum on the Visual Thalamus
前顶盖对视觉丘脑的影响
- 批准号:
10748541 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Role of a craniosynostosis associated fibroblast growth factor receptor mutation in extraocular muscles
颅缝早闭相关成纤维细胞生长因子受体突变在眼外肌中的作用
- 批准号:
10644569 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Quantitative Electrophysiology to Link Neuroplasticity, Brain State, and Behavioral Change in Human Visual Cortex
定量电生理学将神经可塑性、大脑状态和人类视觉皮层的行为变化联系起来
- 批准号:
10643593 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Elucidating the Role of Dorsal Lateral Geniculate Nucleus Burst-Mode Firing in Retinal Inactivation Induced Recovery from Monocular Deprivation
阐明背外侧膝状核爆发模式放电在视网膜失活诱导的单眼剥夺恢复中的作用
- 批准号:
10464250 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别:
Elucidating the Role of Dorsal Lateral Geniculate Nucleus Burst-Mode Firing in Retinal Inactivation Induced Recovery from Monocular Deprivation
阐明背外侧膝状核爆发模式放电在视网膜失活诱导的单眼剥夺恢复中的作用
- 批准号:
10609435 - 财政年份:2022
- 资助金额:
$ 43.5万 - 项目类别: