Functional Genomics of Bipolar Disorder
双相情感障碍的功能基因组学
基本信息
- 批准号:10011360
- 负责人:
- 金额:$ 197.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:16p11.2AffectAllelesAlternative SplicingAmishAnteriorAnxiety DisordersAutopsyBehavioralBindingBiochemicalBiologicalBiological AssayBiological ModelsBiologyBipolar DisorderBloodBrainBrain imagingCRISPR/Cas technologyCatalogsCause of DeathCell LineCell modelCellsCessation of lifeCharacteristicsChromosomesChronicCircadian RhythmsCollaborationsCopy Number PolymorphismDNADNA SequenceDNA Sequence AlterationDataDiagnosisDiffusion Magnetic Resonance ImagingDiseaseElectrophysiology (science)EnrollmentEventFamilyFibroblastsFutureGene ExpressionGene Expression ProfileGene MutationGenesGeneticGenetic VariationGenetic studyGenotypeGoalsGrowthHumanHuman VolunteersImageImpairmentIndividualLeadLengthLifeLightMajor Depressive DisorderMeasuresMendelian disorderMennoniteMental DepressionMental disordersMeta-AnalysisMethodsMitogen-Activated Protein KinasesModelingMolecularMood DisordersMoodsMorphologyMutationNational Heart, Lung, and Blood InstituteNational Human Genome Research InstituteNational Institute of Neurological Disorders and StrokeNeurobiologyNeurodevelopmental DisorderNeurogliaNeuronsNuclear Pore ComplexOccupationalParticipantPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhenotypeProcessPublic HealthPublishingRegenerative MedicineResolutionResourcesRiskRisk FactorsRoleSNP arraySample SizeSamplingSchizophreniaScientistSignal TransductionSkinSmith Magenis syndromeSourceStem cellsStructureSuicideSymptomsTechnologyTestingTherapeuticTherapeutic AgentsTissuesTranscriptTranslatingUnited States National Institutes of HealthValidationValproic AcidVariantWorkage groupbasebrain cellbrain tissuecausal variantcell motilitycell typecingulate cortexconnectomedifferential expressiondisabilitydosageendophenotypeexperimental studyfunctional genomicsgenetic variantgenome editinggenome wide association studyhealthy volunteerhigh riskhigh throughput screeningimaging geneticsinduced pluripotent stem cellinsightinterestkinase inhibitormicroscopic imagingneurodevelopmentneuroimagingneuronal growthneuropsychiatric disordernovelnovel therapeuticsoverexpressionrisk variantscreeningsevere mental illnesssingle cell sequencingsingle-cell RNA sequencingsocialstem cell differentiationstem cell technologystressortooltranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
NCT00001174
In order to better interpret the impact of genetic variation on the brain biology of bipolar disorder (BD), we are pursuing a variety of functional genomics studies, including brain imaging, RNA-sequencing in post-mortem brain tissue, and cellular phenotyping of neurons derived from induced pluripotent stem cells.
We have contributed genotypes and imaging data to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) brain imaging consortium, which brings together imaging and genetics data from around the world to generate large sample sizes needed for robust results. In addition, enrollees in our ongoing Amish Mennonite Bipolar Genetics study (AMBiGen, ZIA-MH002843) are referred for diffusion tensor imaging thru the Amish Connectome Study. Neuroimaging endophenotypes may shed light on the mechanisms whereby common genetic variants influence risk for psychiatric disorders.
We have completed RNA-sequencing in 200 postmortem brain samples obtained from people with and without major psychiatric disorders (BD, schizophrenia and major depression). This study focused on the subgenual anterior cingulate cortex, especially implicated in people with mood disorders. The results illustrate the enormous diversity of brain-expressed transcripts, demonstrate that major psychiatric disorders can be distinguished at the transcript level, and suggest that alternative splicing is one mechanism through which differences in gene expression arise in the brain. Ongoing studies in this sample include experimental validation of differentially expressed genes and transcripts, analysis of co-expression networks, and single-cell RNA sequencing, which will help identify cell-type specific genes and transcripts that are dysregulated in mental illness.
We also seek to model the functional genomics of disease-related genes in cells derived from induced pluripotent stem cell (iPSC) lines. This project aims to explore the ways in which we can use iPSC technology to study the biological impact of genes and genetic mutations that we identify in our other ongoing studies. Working with the NIH Center for Regenerative Medicine, the National Institute of Neurological Disorders and Stroke (NINDS) and the National Heart, Lung and Blood Institute (NHLBI) stem cell cores we have so far successfully reprogrammed fibroblasts into iPSCs from 72 AMBiGen participants. We are developing a large iPSC-based resource and associated work-flows that constitute a living catalog of psychiatric risk alleles.
iPSC-derived cells are studied with high-resolution microscopic imaging, electrophysiology, and gene expression methods. These data could reveal differences between control and patient-derived cells and the impact of known and novel therapeutic agents. In collaboration with Joseph Steiner (NINDS), we are developing a morphologic assay to measure the effect of known therapeutics and stressors on dendritic number and length following differentiation of NPCs into neurons. We are also exploring ways to measure the functional impact of genetic mutations at the cellular level and to use genome editing tools such as CRISPR-Cas9 to rescue cellular phenotypes and establish a causal role for specific genetic mutations.
In a recently published study (Jiang et al. 2019) we used neural cells from carriers of GWAS-identified common risk alleles on chromosome 3p22 to test the influence of these alleles on gene expression and transcription factor binding. We also explored the impact of widely-used mood stabilizing medications. The results showed that neural cells carrying risk alleles displayed lower baseline expression of a nearby gene, TRANK1, that was rescued by chronic treatment with therapeutic dosages of valproic acid (VPA). In collaboration with NIH Distinguished Scientist Gary Felsenfeld, we demonstrated that a nearby SNP strongly affects binding by the transcription factor, CTCF. Decreased expression of TRANK1 perturbed expression of many genes involved in neural development and differentiation. This proof-of-concept study demonstrates the value of iPSC-based assays for translating even common, low-risk alleles identified by GWAS into novel genetic, neurobiological, and pharmacological insights.
Through SNP array screening of cases enrolled in AMBiGen, we have identified a family in which 3 individuals carry a rare duplication event on chromosome 16p11.2 known to confer risk for BD and other illnesses. iPSC lines have been established for all 3 carriers and 3 non-carrier relatives and have been differentiated into neural cells. Transcriptomic analyses indicate that some genes in the duplicated region show increased expression in neurons, but that many other genes are also dysregulated in CNV carriers. Overexpressed genes are enriched for several pathways, including neuronal growth and proliferation, MAP kinase signaling, and cell migration. Ongoing experiments are aimed at testing the hypothesis that MAP kinase inhibitors can ameliorate the morphological changes. If successful, these experiments could form the basis for future collaborations aimed at screening for novel therapeutics.
In the coming year, we will collect iPSC lines from additional families. We also plan to apply single-cell sequencing technology to iPSC-derived cells to explore variation in DNA sequence and gene expression across individual cells from the same donor, which can be an important source of variation in human iPSC studies. The above approaches may illuminate factors that contribute to disruption of biological mechanisms during the disease process and provide cell-based assays for high throughput screening for novel therapeutics.
Multigenic disorders such as BD pose special challenges for experimental studies, since a single causative mutation is usually not identifiable. Thus we are also studying rare, single-gene disorders whose symptoms overlap with those seen in common mental illnesses. Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by behavioral abnormalities and disruptions in circadian rhythm. Cells from people living with SMS obtained in collaboration with Ann Smith (NHGRI) have been reprogrammed into iPSCs and differentiated into neurons and other brain cells. We are using these cells to explore the biochemical and molecular characteristics of SMS. Early results suggest that SMS mutations have a major impact on the growth, morphology, and transcriptome of developing neurons. Findings from this study may have relevance to other neuropsychiatric disorders with circadian rhythm disturbances, such as depression and BD.
In the coming year, we will continue studies in neural cells derived from people with BD, SMS, and unaffected relatives. If successful, these projects will help unpack the biology behind GWAS results, identify high-risk alleles, and shed new light on how risk alleles act within neural cells to generate biological changes in the brain. The findings may identify new targets that lead to better methods of diagnosis and treatment for mood and anxiety disorders.
NCT00001174
为了更好地解释遗传变异对双相情感障碍(BD)脑生物学的影响,我们正在追求各种功能基因组学研究,包括脑成像,在验尸后脑组织中的RNA顺序以及从诱导的多能干细胞中得出的神经元的细胞表型。
我们通过荟萃分析(Enigma)脑成像联盟贡献了基因型和成像数据,以增强神经成像遗传学,从而将来自世界各地的成像和遗传学数据汇集在一起,从而产生大型样本大小,以实现可靠的结果。此外,我们正在进行的Amish Mennonite双极遗传学研究(Ambigen,Zia-MH002843)中的参与者被转介到Amish Connectome研究中进行扩散张量成像。神经影像型内表型可能会揭示出常见的遗传变异的机制,从而影响精神疾病的风险。
我们已经完成了从有或没有重大精神疾病的患者(BD,精神分裂症和重度抑郁症)获得的200后死后大脑样本中的RNA测序。这项研究的重点是亚质子前扣带回皮层,尤其涉及情绪障碍患者。结果说明了脑表达的转录本的巨大多样性,表明可以在转录水平上区分主要的精神疾病,并表明替代剪接是一种机制,通过它在大脑中出现基因表达的差异。该样本中正在进行的研究包括对差异表达基因和转录本的实验验证,共表达网络的分析以及单细胞RNA测序,这将有助于鉴定在精神疾病中失调的细胞类型特定基因和转录本。
我们还试图模拟来自诱导多能干细胞(IPSC)系的细胞中疾病相关基因的功能基因组学。该项目旨在探索我们可以使用IPSC技术研究基因和基因突变的生物学影响的方式,这些突变和基因突变在其他正在进行的研究中都识别出来。与NIH再生医学中心,国家神经系统疾病与中风研究所(NINDS)以及国家心脏,肺和血液研究所(NHLBI)干细胞核心合作,到目前为止,我们已经成功地将成纤维细胞重新编程为来自72名卑鄙参与者的IPSCS。 我们正在开发一个基于IPSC的大型资源和相关的工作流,构成了精神病风险等位基因的生动目录。
使用高分辨率的微观成像,电生理学和基因表达方法研究了IPSC衍生的细胞。这些数据可以揭示对照和患者衍生细胞之间的差异以及已知和新型治疗剂的影响。与约瑟夫·斯坦纳(Joseph Steiner)(NINDS)合作,我们正在开发一种形态学测定法,以测量已知的疗法和压力源对NPC分化为神经元后的树突数量和长度的影响。我们还正在探索如何衡量基因突变在细胞水平上的功能影响,并使用诸如CRISPR-CAS9之类的基因组编辑工具来挽救细胞表型并为特定遗传突变建立因果作用。
在最近发表的一项研究(Jiang et al.2019)中,我们使用了来自GWAS识别的公共风险等位基因3p22染色体的神经细胞,以测试这些等位基因对基因表达和转录因子结合的影响。我们还探索了广泛使用的情绪稳定药物的影响。结果表明,携带风险等位基因的神经细胞显示附近基因Trank1的基线表达较低,该基因是通过慢性治疗丙戊酸(VPA)挽救的。与NIH杰出的科学家加里·费尔森菲尔德(Gary Felsenfeld)合作,我们证明了附近的SNP强烈影响转录因子CTCF的结合。 Trank1的表达降低了许多与神经发育和分化有关的基因的扰动表达。这项概念验证研究证明了基于IPSC的测定方法对于将GWAS鉴定为新型遗传,神经生物学和药理学见解的常见低风险等位基因转化为常见的低风险等位基因的价值。
通过SNP阵列筛选Ammigen的案件,我们确定了一个家庭,其中3个人在已知的16p11.2染色体上进行了罕见的重复事件,已知可以赋予BD和其他疾病的风险。 IPSC线已经为所有3个载体和3个非载体亲属建立,并已分化为神经细胞。转录组分析表明,重复区域中的某些基因在神经元中的表达增加,但许多其他基因在CNV载体中也失调。过表达的基因富含多种途径,包括神经元生长和增殖,MAP激酶信号传导和细胞迁移。正在进行的实验旨在检验以下假设:MAP激酶抑制剂可以改善形态学变化。如果成功,这些实验可能是旨在筛查新型治疗剂的未来合作的基础。
在来年,我们将从其他家庭收集IPSC线。我们还计划将单细胞测序技术应用于IPSC衍生的细胞,以探索来自同一供体的单个细胞的DNA序列和基因表达的变化,这可能是人IPSC研究的重要来源。上述方法可能会阐明导致疾病过程中生物学机制破坏的因素,并为新型治疗剂提供基于细胞的大量吞吐量筛查。
多基因疾病(例如BD)对实验研究提出了特殊挑战,因为单个因果突变通常无法识别。因此,我们还研究了罕见的单基因疾病,其症状与常见的精神疾病中的症状重叠。 Smith-Magenis综合征(SMS)是一种神经发育障碍,其特征是行为异常和昼夜节律中断。与Ann Smith(NHGRI)合作获得的SMS的人的细胞已重新编程为IPSC,并分化为神经元和其他脑细胞。我们正在使用这些细胞探索SMS的生化和分子特征。早期结果表明,SMS突变对发展神经元的生长,形态和转录组有重大影响。 这项研究的结果可能与其他具有昼夜节律障碍(例如抑郁症和BD)的神经精神疾病有关。
在来年,我们将继续研究来自BD,SMS和未受影响的亲属的人的神经细胞。如果成功,这些项目将有助于解开GWAS结果背后的生物学,确定高风险等位基因,并为风险等位基因在神经细胞中的作用如何产生大脑的生物学变化。这些发现可能会确定新目标,从而为情绪和焦虑症提供更好的诊断和治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis J McMahon其他文献
Francis J McMahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis J McMahon', 18)}}的其他基金
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
2873904 - 财政年份:1999
- 资助金额:
$ 197.83万 - 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
6073733 - 财政年份:1999
- 资助金额:
$ 197.83万 - 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
6185483 - 财政年份:1999
- 资助金额:
$ 197.83万 - 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
2415787 - 财政年份:1996
- 资助金额:
$ 197.83万 - 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
2674438 - 财政年份:1996
- 资助金额:
$ 197.83万 - 项目类别:
MOLECULAR GENETIC STUDIES OF BIPOLAR DISORDER
双相情感障碍的分子遗传学研究
- 批准号:
2240922 - 财政年份:1996
- 资助金额:
$ 197.83万 - 项目类别:
A Collaborative Genomic Study of Bipolar Disorder
双相情感障碍的合作基因组研究
- 批准号:
6982758 - 财政年份:
- 资助金额:
$ 197.83万 - 项目类别:
Identification of Genes Involved in Major Mood Disorders
鉴定与主要情绪障碍相关的基因
- 批准号:
8939979 - 财政年份:
- 资助金额:
$ 197.83万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Finding causal variants within schizophrenia risk loci
寻找精神分裂症风险基因座内的因果变异
- 批准号:
9069125 - 财政年份:2015
- 资助金额:
$ 197.83万 - 项目类别:
Epigenetic loss of heterozygosity in a recurrent neurodevelopmental CNV region
复发性神经发育 CNV 区域杂合性的表观遗传丧失
- 批准号:
8806270 - 财政年份:2014
- 资助金额:
$ 197.83万 - 项目类别:
The Role of Germline Mutation and Parental Age in Autism Spectrum Disorders
种系突变和父母年龄在自闭症谱系障碍中的作用
- 批准号:
9039401 - 财政年份:2014
- 资助金额:
$ 197.83万 - 项目类别:
Epigenetic loss of heterozygosity in a recurrent neurodevelopmental CNV region
复发性神经发育 CNV 区域杂合性的表观遗传丧失
- 批准号:
8922061 - 财政年份:2014
- 资助金额:
$ 197.83万 - 项目类别: