Organic photoredox catalysts as sustainable and cost-effective replacement forprecious metal complexes in light-driven drug synthesis
有机光氧化还原催化剂作为光驱动药物合成中贵金属配合物的可持续且经济有效的替代品
基本信息
- 批准号:10011197
- 负责人:
- 金额:$ 76.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-05 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAminesArchitectureAreaBenchmarkingCatalysisChemistryCouplingDevelopmentElectronsElementsGenerationsHealthHumanHydrophobicityIndustrializationIridiumLifeLightMeasuresMetalsMethodsNobel PrizeOxidantsPalladiumPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePhotochemistryProcessProductionPropertyPublic HealthReactionReducing AgentsResearchRouteRutheniumSafetySavingsSchemeScientistSmall Business Innovation Research GrantSolubilitySolventsStructureSystemTechnologyTherapeuticTimeUnited States National Institutes of Healthabsorptionaqueousbasecatalystchemical reactioncommercializationcostcost effectivedesigndrug candidatedrug developmentdrug discoverydrug synthesisempoweredhydrophilicityimprovedinterestmetal complexnovelnovel therapeuticsphenoxazinequantumresearch and developmentsimulation
项目摘要
PROJECT SUMMARY
The underlying technology developed in this project is photoredox catalysis, an active research area with
growing academic and industrial interest. The impact of photoredox catalysis is expected to exceed palladium
catalysis, the Nobel-prize-winning chemistry that fueled the golden age of drug discovery. Photoredox catalysis
uses light to activate chemical reactions, as opposed to heat in conventional processes. Unique single-electron
radical chemistry is accessed through light absorption enabling new reactivities and unprecedented process
efficiencies e.g. synthesis of drug candidates in fewer steps. Of additional industrial interest, it also permits the
use of low-cost and structurally diverse raw materials in drug development and manufacturing that are otherwise
unreactive in conventional processes. From a public health perspective, photoredox catalysis has the potential
to substantially lower the cost of therapeutics and improve overall human health by enabling accelerated drug
development and reduced drug manufacturing costs.
Completing this NIH SBIR Phase II project will result in the commercialization of high performance organic
photoredox catalyst (PC) products. PCs are the key enabler of photoredox catalysis. However, PCs
predominantly used today are based on iridium and ruthenium, two rare and expensive precious metals that do
not scale beyond R&D usage, posing serious cost and supply issues for industrial use. Organic PCs provide the
solution. Made from abundant elements, they are sustainable and can easily scale to meet industrial demand.
Notably, the organic PCs of interest here were designed by quantum simulations to possess critical properties
resolving many limitations of earlier generations. In many applications, they were shown to match and in some
cases exceed the performance of precious metal PCs. The organic PCs developed here provide the scalable
solution for photoredox catalysis required for drug development and manufacturing.
Specifically, this project integrates three main components pivotal to enabling industrial application of
photoredox catalysis, namely i) organic PCs, ii) photochemical reactions, and iii) photoreactor technology. For
organic PCs (Aims 1 and 2), a number of PC candidates will be synthesized with expanded ranges of reactivities
capable of accommodating many industrial reaction conditions. For photochemical reactions (Aims 3 and 4),
novel and medicinally important reactions (with extended substrate scope) with stated customer interest will be
developed using various classes of organic PCs. Finally, for photoreactor integration (Aim 5), commercially
available photoreactor designs and associated reaction conditions will be identified that maximize the
performance of organic PCs.
项目概要
该项目开发的基础技术是光氧化还原催化,这是一个活跃的研究领域
日益增长的学术和工业兴趣。光氧化还原催化的影响力有望超过钯
催化作用,一种荣获诺贝尔奖的化学物质,推动了药物发现的黄金时代。光氧化还原催化
使用光来激活化学反应,而不是传统过程中的热。独特的单电子
通过光吸收获得自由基化学,从而实现新的反应性和前所未有的过程
效率,例如以更少的步骤合成候选药物。具有额外的工业利益,它还允许
在药物开发和制造中使用低成本且结构多样的原材料
在传统工艺中不发生反应。从公共卫生的角度来看,光氧化还原催化具有潜力
通过加速药物治疗,大幅降低治疗成本并改善人类整体健康
开发并降低药品生产成本。
完成这个 NIH SBIR 二期项目将导致高性能有机产品的商业化
光氧化还原催化剂(PC)产品。 PC 是光氧化还原催化的关键推动者。然而,个人电脑
如今主要使用的材料是铱和钌,这两种稀有且昂贵的贵金属
规模不能超出研发用途,给工业用途带来严重的成本和供应问题。有机 PC 提供
解决方案。它们由丰富的元素制成,具有可持续性,并且可以轻松扩展以满足工业需求。
值得注意的是,这里感兴趣的有机 PC 是通过量子模拟设计的,具有关键特性
解决了前几代产品的许多限制。在许多应用中,它们被证明是匹配的,并且在某些应用中
表壳的性能超越了贵金属 PC。这里开发的有机 PC 提供了可扩展的
药物开发和制造所需的光氧化还原催化解决方案。
具体来说,该项目集成了对于实现工业应用至关重要的三个主要组件
光氧化还原催化,即 i) 有机 PC,ii) 光化学反应,以及 iii) 光反应器技术。为了
有机 PC(目标 1 和 2),将合成许多具有扩大反应范围的候选 PC
能够适应许多工业反应条件。对于光化学反应(目标 3 和 4),
新颖且具有医学重要性的反应(具有扩展的底物范围)以及明确的客户兴趣将是
使用各种类别的有机 PC 开发。最后,对于光反应器集成(目标 5),商业化
将确定可用的光反应器设计和相关的反应条件,以最大化
有机 PC 的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chern-Hooi Lim其他文献
Chern-Hooi Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胺类有机物修饰的铂单晶电极|电解质界面结构及氧还原反应研究
- 批准号:22372154
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
长链阴离子捕收剂对胺类捕收剂反浮选赤铁矿的优化及其泡沫调控机制
- 批准号:52364029
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
烟曲链霉菌不对称合成手性胺类人工产物4β-AIP的手性控制机制
- 批准号:22378230
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
电力行业碳捕集装置醇胺类物质挥发性及其逃逸特征研究
- 批准号:22376113
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating and Characterizing Non-Viral, Biocompatible Delivery Vehicles for Nucleic Acid Nanoparticles
研究和表征核酸纳米粒子的非病毒、生物相容性递送载体
- 批准号:
10629227 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
- 批准号:
10700023 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
- 批准号:
10536804 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
- 批准号:
10440504 - 财政年份:2021
- 资助金额:
$ 76.64万 - 项目类别: