Organic photoredox catalysts as sustainable and cost-effective replacement forprecious metal complexes in light-driven drug synthesis
有机光氧化还原催化剂作为光驱动药物合成中贵金属配合物的可持续且经济有效的替代品
基本信息
- 批准号:10011197
- 负责人:
- 金额:$ 76.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-05 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAminesArchitectureAreaBenchmarkingCatalysisChemistryCouplingDevelopmentElectronsElementsGenerationsHealthHumanHydrophobicityIndustrializationIridiumLifeLightMeasuresMetalsMethodsNobel PrizeOxidantsPalladiumPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePhotochemistryProcessProductionPropertyPublic HealthReactionReducing AgentsResearchRouteRutheniumSafetySavingsSchemeScientistSmall Business Innovation Research GrantSolubilitySolventsStructureSystemTechnologyTherapeuticTimeUnited States National Institutes of Healthabsorptionaqueousbasecatalystchemical reactioncommercializationcostcost effectivedesigndrug candidatedrug developmentdrug discoverydrug synthesisempoweredhydrophilicityimprovedinterestmetal complexnovelnovel therapeuticsphenoxazinequantumresearch and developmentsimulation
项目摘要
PROJECT SUMMARY
The underlying technology developed in this project is photoredox catalysis, an active research area with
growing academic and industrial interest. The impact of photoredox catalysis is expected to exceed palladium
catalysis, the Nobel-prize-winning chemistry that fueled the golden age of drug discovery. Photoredox catalysis
uses light to activate chemical reactions, as opposed to heat in conventional processes. Unique single-electron
radical chemistry is accessed through light absorption enabling new reactivities and unprecedented process
efficiencies e.g. synthesis of drug candidates in fewer steps. Of additional industrial interest, it also permits the
use of low-cost and structurally diverse raw materials in drug development and manufacturing that are otherwise
unreactive in conventional processes. From a public health perspective, photoredox catalysis has the potential
to substantially lower the cost of therapeutics and improve overall human health by enabling accelerated drug
development and reduced drug manufacturing costs.
Completing this NIH SBIR Phase II project will result in the commercialization of high performance organic
photoredox catalyst (PC) products. PCs are the key enabler of photoredox catalysis. However, PCs
predominantly used today are based on iridium and ruthenium, two rare and expensive precious metals that do
not scale beyond R&D usage, posing serious cost and supply issues for industrial use. Organic PCs provide the
solution. Made from abundant elements, they are sustainable and can easily scale to meet industrial demand.
Notably, the organic PCs of interest here were designed by quantum simulations to possess critical properties
resolving many limitations of earlier generations. In many applications, they were shown to match and in some
cases exceed the performance of precious metal PCs. The organic PCs developed here provide the scalable
solution for photoredox catalysis required for drug development and manufacturing.
Specifically, this project integrates three main components pivotal to enabling industrial application of
photoredox catalysis, namely i) organic PCs, ii) photochemical reactions, and iii) photoreactor technology. For
organic PCs (Aims 1 and 2), a number of PC candidates will be synthesized with expanded ranges of reactivities
capable of accommodating many industrial reaction conditions. For photochemical reactions (Aims 3 and 4),
novel and medicinally important reactions (with extended substrate scope) with stated customer interest will be
developed using various classes of organic PCs. Finally, for photoreactor integration (Aim 5), commercially
available photoreactor designs and associated reaction conditions will be identified that maximize the
performance of organic PCs.
项目摘要
该项目开发的基础技术是Photoredox催化,这是一个活跃的研究领域
发展学术和工业兴趣。预计光电毒素催化的影响将超过钯
催化作用,诺贝尔奖获奖的化学反应促进了毒品发现的黄金时代。光毒素催化
使用光激活化学反应,而不是在常规过程中加热。唯一的单电子
通过光吸收获得根本化学,实现新的反应率和前所未有的过程
效率,例如较少步骤的候选毒品合成。具有额外的工业利益,它还允许
在药物开发和制造中使用低成本和结构上多样的原材料,否则
在常规过程中无反应。从公共卫生的角度来看,Photoredox催化具有潜力
通过实现加速药物,可以大大降低治疗剂的成本并改善整体人类健康
开发和降低药物制造成本。
完成此NIH SBIR II期项目将导致高性能有机商业化
Photoredox催化剂(PC)产品。 PC是光电毒素催化的关键推动力。但是,PC
今天主要使用的是基于虹膜和唯一,两种稀有且昂贵的贵金属
不超过研发的规模,构成了工业用途的严重成本和供应问题。有机PC提供
解决方案。它们是由丰富的元素制成的,它们是可持续的,可以轻松扩展以满足工业需求。
值得注意的是,这里感兴趣的有机PC是通过量子模拟设计的,以具有关键特性
解决早期几代的许多局限性。在许多应用中,它们被证明是匹配的,在某些应用中
案例超过了贵金属PC的性能。这里开发的有机PC提供了可扩展的
用于药物开发和制造所需的光电毒催化解决方案。
具体而言,该项目集成了三个主要组成部分,以实现工业应用
光电毒素催化,即i)有机PC,ii)光化学反应和iii)光反应器技术。为了
有机PC(目标1和2),许多PC候选者将通过扩展的反应性范围合成
能够适应许多工业反应条件。对于光化学反应(目标3和4),
新颖和具有医学重要的反应(具有扩展的基板范围)会陈述客户兴趣
使用各种类别的有机PC开发。最后,用于光电反应器的集成(AIM 5),商业上
将确定可用的光电反应器设计和相关的反应条件,使最大化
有机PC的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chern-Hooi Lim其他文献
Chern-Hooi Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
柑橘意大利青霉咪鲜胺抗性菌株耐药性形成机制研究
- 批准号:32372396
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
烟曲链霉菌不对称合成手性胺类人工产物4β-AIP的手性控制机制
- 批准号:22378230
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
叔胺调控无水复合胺相变吸收CO2机理及传质-反应动力学研究
- 批准号:22366012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
磷脂酰乙醇胺代谢紊乱介导自噬相关磷酸化α-syn清除异常在术后认知恢复延迟中作用及机制
- 批准号:82301359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
StSAMDC调控多胺参与马铃薯晚疫病抗性的机制研究
- 批准号:32301848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating and Characterizing Non-Viral, Biocompatible Delivery Vehicles for Nucleic Acid Nanoparticles
研究和表征核酸纳米粒子的非病毒、生物相容性递送载体
- 批准号:
10629227 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
- 批准号:
10700023 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
- 批准号:
10536804 - 财政年份:2022
- 资助金额:
$ 76.64万 - 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
- 批准号:
10440504 - 财政年份:2021
- 资助金额:
$ 76.64万 - 项目类别: