An Automated Proteoform Characterization Control System
自动化蛋白质形态表征控制系统
基本信息
- 批准号:10010454
- 负责人:
- 金额:$ 20.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:Amino Acid SequenceBiologicalBiotechnologyChargeCollectionComputer softwareConsumptionCustomDataData AnalysesData SetDatabasesDecision MakingDiseaseEscherichia coliFamilyFeedbackGenerationsGenesGrantImmunoprecipitationIndustryIntelligenceKnowledgeLaboratoriesManualsMass Spectrum AnalysisModelingMolecular WeightNamesOutputPeptidesPhasePost-Translational Protein ProcessingProbabilityProceduresPropertyProteinsProteomicsReportingResearchResearch PersonnelResolutionRunningSamplingScanningScientistSmall Business Innovation Research GrantSpeedSumSurveysSystemTechnologyTestingTimeUniversitiesUpdateValidationVariantVisualization softwarebasecomputerized data processingdata acquisitiondata visualizationdrug developmentexperimental studyflexibilityfollow-upinsightinstrumentinterestmass spectrometernovelsoftware systemsstemsuccesstherapeutic proteintool
项目摘要
ABSTRACT
Current mass spectrometers have benefited from a technological revolution over recent years, with great
increases to speed and resolution as well as significant improvements in fragmentation capabilities for
biomolecule analyses. Proteomics results that were previously unthinkable only a few years ago are now routine
and being performed by hundreds of laboratories across the world. However, despite these advancements and
successes, the software systems guiding mass spectrometry data acquisition have not seen technology
improvements on the same scale. As such, these new mass spectrometers have not yet reached their full potential,
particularly for intact protein characterization where analytes are more varied than peptides and acquisition
parameters are tougher to generalize. A software named AutoProt is being developed to automate the targeted
characterization of proteoforms from a proteoform family. AutoProt controls the acquisition of mass
spectrometry data, initiating a data-driven fragmentation routine when proteoforms-of-interest from a
proteoform family are detected in survey scans. As each fragmentation data scan is collected, AutoProt matches
experimental data to theoretical proteoform fragments and uses the corresponding results to make an informed
decision on how to further characterize the proteoform. By using instant feedback, fragmentation settings are
customized specifically and in real-time for each proteoform being analyzed, leading to better characterization
results in less overall time. In Phase I, AutoProt will be further developed to handle the characterization of
multiple proteoforms such as modified and truncated forms from the same proteoform family in the same
acquisition run, enabling a wider assessment of the proteoforms present in a sample (e.g., all the proteoforms
from the same UniProt gene accession after immunoprecipitation). A database will be integrated into AutoProt
to store run data and allow sample characterization to be resumed for additional acquisition runs. Furthermore,
the characterization routine will be made more robust in this grant through the collection of a large amount of
fragmentation data on many proteoforms and then the distillation of that data into a general fragmentation
model. AutoProt will then be able to broadly characterize proteoforms with different properties (e.g., molecular
weight and fragmentation propensities). Lastly, AutoProt will be outfitted with report generation to
automatically output experimental report files compatible with the proteoform data visualization tool,
TDCollider. With these features in place, AutoProt will be a first-of-its-kind automated characterization software
with first-class proteoform characterization abilities and acquisition-to-report capabilities, eliminating time-
consuming set up of acquisition and processing for proteoform characterization data.
抽象的
当前的质谱仪受益于近年来的技术革命,取得了巨大的进步
速度和分辨率的提高以及碎片能力的显着改进
生物分子分析。蛋白质组学结果在几年前还是不可想象的,现在已成为家常便饭
并由世界各地数百个实验室进行。然而,尽管有这些进步和
成功,指导质谱数据采集的软件系统还没有看到技术
同等规模的改进。因此,这些新型质谱仪尚未充分发挥其潜力,
特别是对于完整蛋白质的表征,其中分析物比肽和采集更加多样化
参数更难概括。正在开发一个名为 AutoProt 的软件来自动化目标
蛋白质型家族中蛋白质型的表征。 AutoProt 控制质量的采集
光谱数据,当感兴趣的蛋白质形式来自
在调查扫描中检测到蛋白质型家族。当收集每个碎片数据扫描时,AutoProt 会匹配
将实验数据转化为理论蛋白质片段,并使用相应的结果来做出明智的决定
决定如何进一步表征蛋白质组。通过使用即时反馈,碎片设置
针对正在分析的每种蛋白质型进行专门定制和实时定制,从而实现更好的表征
导致总时间更少。在第一阶段,AutoProt 将得到进一步开发,以处理
多种蛋白质形式,例如来自同一蛋白质形式家族的修饰和截短形式
采集运行,能够对样品中存在的蛋白质形式进行更广泛的评估(例如,所有蛋白质形式
来自免疫沉淀后的相同 UniProt 基因登录)。数据库将集成到 AutoProt 中
存储运行数据并允许恢复样品表征以进行额外的采集运行。此外,
通过收集大量的资料,本次拨款将使得表征程序更加稳健
许多蛋白质形式的碎片数据,然后将该数据蒸馏成一般碎片
模型。然后,AutoProt 将能够广泛地表征具有不同特性(例如,分子
重量和碎片倾向)。最后,AutoProt 将配备报告生成功能
自动输出与proteoform数据可视化工具兼容的实验报告文件,
TDCollider。有了这些功能,AutoProt 将成为同类首个自动化表征软件
具有一流的蛋白质组表征能力和采集到报告的能力,消除了时间
消耗蛋白质型表征数据的采集和处理设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Durbin其他文献
Kenneth Durbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Durbin', 18)}}的其他基金
A proteoform-centric informatics platform for targeted top-down characterization and quantitation
以蛋白质组为中心的信息学平台,用于有针对性的自上而下的表征和定量
- 批准号:
10325492 - 财政年份:2021
- 资助金额:
$ 20.2万 - 项目类别:
Data-Driven Software to Automate Top-Down Mass Spectrometry of Large Molecules
用于自动化大分子自上而下质谱分析的数据驱动软件
- 批准号:
10761429 - 财政年份:2020
- 资助金额:
$ 20.2万 - 项目类别:
A comprehensive solution for native top down mass spectrometry data analyses across structural biology and biopharma
跨结构生物学和生物制药的原生自上而下质谱数据分析的综合解决方案
- 批准号:
10621751 - 财政年份:2019
- 资助金额:
$ 20.2万 - 项目类别:
A comprehensive solution for native top down mass spectrometry data analyses across structural biology and biopharma
跨结构生物学和生物制药的原生自上而下质谱数据分析的综合解决方案
- 批准号:
10384677 - 财政年份:2019
- 资助金额:
$ 20.2万 - 项目类别:
相似国自然基金
基于CRISPR生物技术与双传感效应的光纤传感器及其超灵敏猴痘病毒基因检测研究
- 批准号:62305224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于流感病毒结构和功能仿生基础的生物技术药物研究
- 批准号:82130100
- 批准年份:2021
- 资助金额:291 万元
- 项目类别:重点项目
定制工程细胞合成生物技术及多样性应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
生物技术启发的拓扑合成高分子制备及构效关系研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
下一代工业生物技术:理论与实践
- 批准号:32130001
- 批准年份:2021
- 资助金额:291 万元
- 项目类别:重点项目
相似海外基金
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Membrane repair as a therapeutic intervention for treating Becker Muscular Dystrophy
膜修复作为治疗贝克尔肌营养不良症的治疗干预措施
- 批准号:
10761285 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Single-molecule protein sequencing by detection and identification of N-terminal amino acids
通过检测和鉴定 N 端氨基酸进行单分子蛋白质测序
- 批准号:
10646060 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别:
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
- 批准号:
10717598 - 财政年份:2023
- 资助金额:
$ 20.2万 - 项目类别: