Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits
神经回路跨突触标记的分子多物种方法
基本信息
- 批准号:10009743
- 负责人:
- 金额:$ 273.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneAddressAdoptedBRAIN initiativeBehaviorBiological AssayBrainBrain DiseasesBrain imagingCalciumCell Surface ReceptorsCellsChimeric ProteinsCommunitiesComplexCre-LoxPDataDendritesDrosophila genusExperimental ModelsFishesGeneticGenetic RecombinationGenetic TechniquesGenetic TranscriptionGenomeGlucagonGoalsHumanImaging TechniquesInjectionsInvertebratesKnowledgeLabelLifeLigand BindingLigandsMapsMeasurementMediatingMethodsMicroscopeMicroscopyModelingModificationMolecularMolecular GeneticsMonitorNamesNervous system structureNeuraxisNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchNoiseOpticsOrganismPathway interactionsPhasePlasmidsPopulationProcessProteinsProteolysisReagentReceptor ActivationReporterReporter GenesReproducibilityResearch PersonnelRestSignal PathwaySignal TransductionSiteStructureSynapsesSystemTechnical ExpertiseTechniquesTestingTransgenic AnimalsTransgenic OrganismsWorkZebrafishbasedesignembryo cellexperimental studyflyin vivoinnovationinsightinterestneural circuitnovelnovel strategiesoptogeneticspostsynaptic neuronspresynaptic neuronsreceptorrelating to nervous systemresponsesensortooltwo-photonvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
It is estimated that the human brain contains an overwhelming 1015 synapses, structures essential for the normal
functioning of neural circuits. Our knowledge of the connections that form these critical signaling sites, in even
the simplest vertebrate nervous systems, is sorely lacking. Thus, a stated goal of this BRAIN initiative is to
“develop and validate novel tools to facilitate the detailed analysis of complex circuits and provide insights into
cellular interactions that underlie brain function”. This multi-PI collaborative project precisely addresses this goal.
It takes advantage of a powerful genetic technique, trans-Tango, that directs signaling across synapses to
identify both pre-synaptic neurons and their specific post-synaptic targets. The overall objectives of the proposed
experiments are three-fold: First, we will adapt the trans-Tango anterograde trans-synaptic signaling platform,
which was initially established and successfully implemented in the Drosophila model, to a vertebrate brain - that
of the zebrafish. The zebrafish is the organism of choice because of the ability to assay trans-Tango components
efficiently from injections of plasmid constructs into 1-cell embryos, and the ease and rapidity of generating
transgenic animals to activate trans-Tango in defined neuronal populations. Second, we will independently and
rigorously validate the neural connections revealed by trans-Tango as functional synaptic connections,
capitalizing on optogenetics, imaging techniques, and advanced microscopy methods. Owing to its transparency,
the larval zebrafish is ideally suited to verify synaptic connectivity in vivo using optical approaches. Third, we will
develop a new retrograde version of trans-Tango, which will allow identification of the pre-synaptic input of given
post-synaptic neurons. The modularity of trans-Tango permits efficient reconfiguration and optimization of the
system for accurate circuit
map
ping. The “retro-Tango” version will first be applied to Drosophila, building upon
lessons learned from the establishment of trans-Tango and, once optimal, introduced to the zebrafish nervous
system. By assembling the proposed genetic toolkit for anterograde and retrograde trans-synaptic tracing in both
invertebrate and vertebrate nervous systems, we expect these techniques to become widely used by the
neuroscience community and applied to additional experimental models. The strengths of this proposal are the
innovative strategies used to
map
neural connectivity, the compelling preliminary data, and the unique and
complementary expertise in molecular genetics, circuit neuroscience and microscopy design that the
collaborating researchers bring to the project.
项目概要/摘要
据估计,人脑包含数量惊人的 1015 个突触,这些突触是正常运作所必需的结构。
我们对形成这些关键信号位点的连接的了解,甚至在这些方面。
因此,该 BRAIN 计划的既定目标是:
“开发和验证新颖的工具,以促进复杂电路的详细分析并提供洞察
“大脑功能背后的细胞相互作用”。这个多 PI 协作项目正是解决了这一目标。
它利用了强大的遗传技术 trans-Tango,可将信号传导穿过突触
确定突触前神经元及其特定的突触后目标。
实验分为三部分:首先,我们将采用 trans-Tango 顺行跨突触信号平台,
最初在果蝇模型中建立并成功应用于脊椎动物大脑 -
斑马鱼是首选生物体,因为它能够检测反式 Tango 成分。
高效地将质粒构建体注射到 1 细胞胚胎中,并且生成的简便性和快速性
其次,我们将独立且独立地利用转基因动物来激活特定神经群体中的反式Tango。
严格验证 trans-Tango 揭示的神经连接作为功能性突触连接,
利用光遗传学、成像技术和先进的显微镜方法,
斑马鱼幼虫非常适合使用光学方法验证体内突触连接。
开发新的 trans-Tango 逆行版本,这将允许识别给定的突触前输入
trans-Tango 的模块化允许有效地重新配置和优化突触后神经元。
精确电路系统
地图
“retro-Tango”版本将首先应用于果蝇。
从建立 trans-Tango 中吸取的经验教训,一旦达到最佳效果,就引入斑马鱼神经
通过组装所提出的用于顺行和逆行跨突触追踪的遗传工具包。
无脊椎动物和脊椎动物的神经系统,我们预计这些技术将被广泛使用
神经科学界并应用于其他实验模型。
创新策略用于
地图
神经连接、令人信服的初步数据以及独特且
分子遗传学、电路神经科学和显微镜设计方面的互补专业知识
合作研究人员为该项目带来了成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilad Barnea其他文献
Gilad Barnea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilad Barnea', 18)}}的其他基金
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Sensorimotor Transformations for Controlling Heading Direction in the Insect Central Complex
昆虫中央复合体控制前进方向的感觉运动变换
- 批准号:
10717148 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits - Diversity Supplement
用于神经回路跨突触标记的分子多物种方法 - Diversity Supplement
- 批准号:
10286154 - 财政年份:2020
- 资助金额:
$ 273.18万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10189547 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10424479 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
10402843 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
9816360 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
9137838 - 财政年份:2016
- 资助金额:
$ 273.18万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
8757671 - 财政年份:2014
- 资助金额:
$ 273.18万 - 项目类别:
Controlling epigenetic states and nuclear architecture in the brain
控制大脑中的表观遗传状态和核结构
- 批准号:
9275951 - 财政年份:2013
- 资助金额:
$ 273.18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Applying Population Management Best Practices to Preventive Genomic Medicine
将人口管理最佳实践应用于预防性基因组医学
- 批准号:
10674202 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别: