Predicting suicide attempt in youth by integrating EHR, clinical, cognitive and imaging data
通过整合 EHR、临床、认知和影像数据来预测青少年自杀企图
基本信息
- 批准号:10038009
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdolescenceAdolescentAdoptedAdultAgeAlgorithmsAnxietyAreaAssessment toolBehavioralCause of DeathChildChildhoodClassificationClinicalCognitiveComplexComputer softwareComputerized Medical RecordCoupledDataData AnalyticsData SetDepression screenDevelopmentElectronic Health RecordEngineeringEnvironmentEvaluationFamiliarityFeeling suicidalFrequenciesGuidelinesGurHealthHippocampus (Brain)HospitalsImageIndividualInsuranceInterventionLeadMachine LearningMeasuresMedical DeviceMedical RecordsMedical centerMedicineMemoryMethodsMissionModelingMoodsNeurocognitiveObsessive compulsive behaviorOdds RatioOutcomeParticipantPatientsPediatric HospitalsPhenotypePhiladelphiaPoliciesPopulationPositioning AttributePrimary Health CarePrimary PreventionProxyPsychiatristPsychological TransferPsychotic DisordersRaceRecording of previous eventsReportingResearchResearch PersonnelResourcesRestRiskRisk FactorsSamplingSourceSubgroupSuicideSuicide attemptSymptomsSystemTeenagersTestingThalamic structureThinnessTimeTrainingTranslatingUniversitiesUpdateYouthadolescent suicideagedbasecare providersclinical careclinical phenotypeclinical practicecohortcomputerized toolsdata resourcedeep neural networkdepressive symptomsearly adolescenceexecutive functionexpectationexperiencefallsimprovedlearning progressionmachine learning algorithmmachine learning methodmeetingsmodifiable riskmultidisciplinarymultiple data typesneuroimagingnovelnovel strategiespediatric patientsprediction algorithmpredictive modelingprospectiverandom forestreducing suicideroutine screeningscreeningscreening guidelinessocial cognitionsuicidal adolescentsuicidal morbiditysuicidal risksuicide rate
项目摘要
Summary. Suicide in youths is a growing health concern, yet current clinical practice falls short of timely
identifying youths at risk for suicide attempt (SA). The overarching aim of this research is to use data driven
machine learning methods to facilitate primary prevention of youth SAs in primary care pediatric settings.
Clinical guidelines recommend screening for depression, considered a proxy for suicide risk, from age 12 in
pediatric setting. The proposed study aims at identification of variables (features) that can be collected by early
adolescence, and contribute to prediction of SA in later adolescence. This study will leverage the effort that has
been invested in previous projects: a study using electronic health records (EHR) to predict SAs and deaths in
University of Pittsburgh Medical Center (UPMC) hospitals; and the Philadelphia Neurodevelopmental Cohort
(PNC), that included comprehensive phenotyping of ~9,500 youths. These previous efforts will be integrated to
develop and optimize SA prediction in youth from the Children’s Hospital of Philadelphia (CHOP) network, from
which we have data on ~40,000 who were screened for a history of SA between the years 2014-2018
(n~1500). First, in the CHOP dataset, we will generate predictive models based on UPMC data, test their
predictive validity in CHOP youth population, and then develop, optimize, and cross validate these predictive
models using CHOP EHR data as a training set (Aim 1). Second, in the PNC dataset, we will use multiple data
types (demographic, behavioral, cognitive, imaging) to classify youths with suicide ideation (SI, n~750) and
identify features (potentially modifiable) that are indicative of SI and may also point to potential mechanisms
underlying youth SI (Aim 2). Lastly, in a subset of 936 youths (49 with SAs) with both CHOP EHR data and
research PNC evaluation that was conducted at mean age 11 (T1), ~5 years before SA screening (T2), we will
test the validity of models from Aims 1&2, and aim to identify data features that were collected at T1 and can
improve/optimize/outperform the prediction of SAs that relies solely on EHR data (Aim 3). The proposed study
relies on the expertise of a highly capable multidisciplinary team comprised of Dr. Barzilay (PI), child-
adolescent psychiatrist experienced in suicide research and analysis of suicide related phenotypes in PNC
data; Dr. Tsui (PI), an expert in machine learning who has developed predictive algorithms of SA and deaths
using UPMC data; and collaborators critical for meeting study aims, Dr. Raquel Gur as the lead researcher
who established the PNC, Dr. Ruben Gur who developed the PNC neurocognitive assessment tools, and Dr.
Oquendo who will provide expertise in suicide prediction research. The team’s access and familiarity with
CHOP EHR and PNC data resources, coupled with its interdisciplinary expertise, creates a unique opportunity
to identify childhood features that can optimize later adolescent SA prediction. Expected findings can ultimately
translate to real world clinical practice, be integrated in EHR, and help flag youths at risk for a SA in a pediatric
setting, allowing timely identification and intervention, contributing to the mission of reducing suicide in youth.
摘要:青少年自杀是一个日益严重的健康问题,但目前的临床实践还不够及时。
识别有自杀企图风险的青少年 (SA) 这项研究的首要目标是使用数据驱动。
机器学习方法促进初级保健儿科环境中青少年 SA 的初级预防。
临床指南建议从 12 岁起对抑郁症进行筛查,抑郁症被认为是自杀风险的一个指标。
拟议的研究旨在识别可以早期收集的变量(特征)。
青春期,并有助于预测青春期后期的 SA。这项研究将利用已经取得的成果。
已投资于之前的项目:一项使用电子健康记录 (EHR) 来预测 SA 和死亡的研究
匹兹堡大学医学中心 (UPMC) 医院和费城神经发育队列;
(PNC),其中包括约 9,500 名年轻人的综合表型分析,这些先前的努力将被整合到其中。
开发和优化来自费城儿童医院 (CHOP) 网络的青少年 SA 预测,
我们拥有 2014 年至 2018 年间约 40,000 名接受过 SA 病史筛查的人的数据
(n~1500) 首先,在CHOP数据集中,我们将基于UPMC数据生成预测模型,测试它们。
CHOP 青年人群的预测有效性,然后开发、优化和交叉验证这些预测
使用 CHOP EHR 数据作为训练集的模型(目标 1)其次,在 PNC 数据集中,我们将使用多个数据。
类型(人口统计、行为、认知、影像)对有自杀意念的青少年进行分类 (SI, n~750) 和
识别表明 SI 的特征(可能可修改),也可能指出潜在的机制
最后,在 936 名青少年(49 名有 SA)的子集中,包含 CHOP EHR 数据和
研究 PNC 评估在平均年龄 11 岁 (T1) 进行,即 SA 筛查 (T2) 前约 5 年,我们将
测试目标 1 和 2 中模型的有效性,旨在识别在 T1 收集的数据特征,并且可以
改进/优化/超越仅依赖 EHR 数据的 SA 预测(目标 3)。
依靠由 Barzilay 博士(PI)、儿童专家组成的高素质多学科团队的专业知识
青少年抑郁症患者自杀研究及 PNC 自杀相关表型分析
Tsui 博士(PI),机器学习专家,开发了 SA 和死亡的预测算法
使用 UPMC 数据;以及对实现研究目标至关重要的合作者,首席研究员 Raquel Gur 博士
PNC 的创建者、PNC 神经认知评估工具的开发者 Ruben Gur 博士以及 PNC 神经认知评估工具的开发者 Ruben Gur 博士和
Oquendo 将提供自杀预测研究方面的专业知识。
CHOP EHR 和 PNC 数据资源及其跨学科专业知识创造了独特的机会
确定可以优化以后青少年 SA 预测的童年特征。
转化为现实世界的临床实践,融入 EHR,并帮助标记儿科中面临 SA 风险的青少年
设定,以便及时识别和干预,有助于实现减少青少年自杀的使命。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deconstructing the role of the exposome in youth suicidal ideation: Trauma, neighborhood environment, developmental and gender effects.
- DOI:10.1016/j.ynstr.2021.100314
- 发表时间:2021-05
- 期刊:
- 影响因子:5
- 作者:Barzilay R;Moore TM;Calkins ME;Maliackel L;Jones JD;Boyd RC;Warrier V;Benton TD;Oquendo MA;Gur RC;Gur RE
- 通讯作者:Gur RE
Connectome-wide Functional Connectivity Abnormalities in Youth With Obsessive-Compulsive Symptoms.
- DOI:10.1016/j.bpsc.2021.07.014
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Alexander-Bloch AF;Sood R;Shinohara RT;Moore TM;Calkins ME;Chertavian C;Wolf DH;Gur RC;Satterthwaite TD;Gur RE;Barzilay R
- 通讯作者:Barzilay R
Identifying Youth at Risk for Suicidal Thoughts and Behaviors Using the "p" factor in Primary Care: An Exploratory Study.
使用初级保健中的“p”因素识别有自杀想法和行为风险的青少年:一项探索性研究。
- DOI:10.1080/13811118.2022.2106925
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ruan-Iu,Linda;Rivers,AlannahShelby;Barzilay,Ran;Moore,TylerM;Tien,Allen;Diamond,Guy
- 通讯作者:Diamond,Guy
Association Between Discrimination Stress and Suicidality in Preadolescent Children.
- DOI:10.1016/j.jaac.2021.08.011
- 发表时间:2022-05
- 期刊:
- 影响因子:13.3
- 作者:Argabright ST;Visoki E;Moore TM;Ryan DT;DiDomenico GE;Njoroge WFM;Taylor JH;Guloksuz S;Gur RC;Gur RE;Benton TD;Barzilay R
- 通讯作者:Barzilay R
Evaluation of Attention-Deficit/Hyperactivity Disorder Medications, Externalizing Symptoms, and Suicidality in Children.
- DOI:10.1001/jamanetworkopen.2021.11342
- 发表时间:2021-06-01
- 期刊:
- 影响因子:13.8
- 作者:Shoval G;Visoki E;Moore TM;DiDomenico GE;Argabright ST;Huffnagle NJ;Alexander-Bloch AF;Waller R;Keele L;Benton TD;Gur RE;Barzilay R
- 通讯作者:Barzilay R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Barzilay其他文献
Ran Barzilay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ran Barzilay', 18)}}的其他基金
Prospective predictors of risk and resilience trajectories of mental health in US youth during COVID-19
COVID-19 期间美国青少年心理健康风险和复原力轨迹的前瞻性预测因素
- 批准号:
10655685 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of resilience to developmental stress in children and adolescents.
儿童和青少年发展压力的恢复机制。
- 批准号:
10448271 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of resilience to developmental stress in children and adolescents.
儿童和青少年发展压力的恢复机制。
- 批准号:
10210229 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of resilience to developmental stress in children and adolescents.
儿童和青少年发展压力的恢复机制。
- 批准号:
9806213 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
相似国自然基金
氧化应激通过m6A修饰下调凹侧肌肉干细胞ESR1表达在青少年特发性脊柱侧凸中的机制研究
- 批准号:82302657
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体免疫激活通过阴道菌群垂直传递并损伤子代血脑屏障促进青少年抑郁易感的作用与机制
- 批准号:82371550
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ZMYND10基因突变通过IGF信号通路调控DNAAFs功能在青少年特发性脊柱侧凸中的致病作用及机制研究
- 批准号:82360419
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
FUS通过调控ATP6V1C2表达参与青少年型肌萎缩侧索硬化症发生机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PAX3通过生肌调节因子调控椎旁肌异常发育在青少年特发性脊柱侧凸发病中的机制研究
- 批准号:82002260
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Alcohol Use and Mental Health as Predictors of Intimate Partner Violence from Adolescence to Young Adulthood
饮酒和心理健康是从青春期到青年期亲密伴侣暴力的预测因素
- 批准号:
10749253 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Modeling Longitudinal Reading Comprehension in Adolescence: Protective and Risk Factors
青春期纵向阅读理解建模:保护因素和风险因素
- 批准号:
10586662 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Identifying Disparities in the Cascade of Care for Medicaid-Enrolled Youth with Opioid Use Disorder
确定对参加医疗补助的患有阿片类药物使用障碍的青少年的一系列护理中的差异
- 批准号:
10584158 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
- 批准号:
10677547 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Adult Progression of Adolescent Onset Substance Use Disorder in a High Risk Sample
高风险样本中青少年发作药物使用障碍的成人进展
- 批准号:
10389730 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别: