Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
基本信息
- 批准号:10033970
- 负责人:
- 金额:$ 57.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAgonistAmino AcidsBindingBinding SitesBlood flowBrainBrain InjuriesBrugada syndromeCaliforniaCalmodulinCardiacCardiovascular DiseasesChargeCollaborationsComplexCryoelectron MicroscopyDependenceDiabetes MellitusDiseaseDrug TargetingElectrophysiology (science)EnvironmentFamilyFamily memberFoundationsFunctional disorderFutureGlucoseHeartHomologous GeneHumanImmune responseIon ChannelIon Channel GatingIschemic StrokeKineticsKnowledgeLigand BindingLigandsLinkLiposomesMapsMetalsMissionMolecularMutagenesisMutationNon-Insulin-Dependent Diabetes MellitusObesityOutcomePharmaceutical PreparationsPharmacologyPharmacology StudyPhosphatidylinositol 4,5-DiphosphatePhysiologyPlayPolymersPropertyProteinsPublic HealthResearchResearch Project GrantsResolutionRestRoleSignal TransductionSiteSmooth Muscle MyocytesSpecificityStimulusStrokeStructureStructure of beta Cell of isletTRP channelTRPM5 geneTaste Bud CellTaste PerceptionTherapeutic AgentsUnited States National Institutes of HealthVascular Smooth MuscleWorkZebrafishanalogbasebrain tissuecerebral arteryconstrictiondesensitizationdrug actiondrug developmentexperimental studyimpaired glucose toleranceinhibitor/antagonistinsightinsulin secretionmembernanodisknovel therapeuticsparticlepatch clamppreservationpressurereceptorreconstitutionsensorsmall moleculesuccesssweet taste perceptiontaste stimulitaste transductionvoltage
项目摘要
PROJECT SUMMARY
Blood flow from the heart to the brain is strictly regulated to protect the delicate brain tissue, because improper
blood flow can give rise to numerous cardiovascular diseases and brain injuries. TRPM4 is one of the major
actors regulating blood flow in the vascular smooth muscle cells in the cerebral arteries when intracellular
pressure changes. Mutation or dysfunction of TRPM4 is linked to numerous cardiovascular diseases,
including stroke and Brugada syndrome. TRPM4 and its closest homolog, TRPM5, are Ca2+-activated,
nonselective, voltage-gated ion channels. TRPM5 is highly expressed in pancreatic beta cells, and
dysfunction or mutation in TRPM5 is associated in type II diabetes and obesity. In addition, TRPM4 and
TRPM5 in the taste bud cells play an important role in taste signaling, and loss of both channels abolishes
the ability to detect bitter, sweet, or umami stimuli. Taken together, TRPM4 and TRPM5 have a wide range
of roles in physiology and pathophysiology.
Both TRPM4 and TRPM5 belong to the TRPM (melastatin-like transient receptor potential) subfamily of the
TRP superfamily, and they are the only two members impermeable to Ca2+. The lack of a canonical positively
charged voltage-sensing domain makes a mystery of how TRPM4 and TRPM5 sense voltage. Despite
sharing 45% amino acid identity, TRPM4 and M5 have distinct functional and pharmacological properties in
terms of kinetics and sensitivities to drugs. A collaboration has been built between Takeda California, Inc.
and our lab to study the important role of TRPM5 in treatment of diabetes. The high-affinity drugs specifically
targeting TRPM5 provided by Takeda and the potential future drug development strengthen our proposal on
studying the pharmacology of these two channels. At present, we do not understand, in molecular detail, how
the channels are activated in a voltage-dependent manner, how they are modulated by small molecules
binding to them at specific sites, how they are distinguished by various drugs, or how their channel functions
are modulated by other proteins such as calmodulin.
Building on the success of solving the first human TRPM4 structure in closed state, we propose to continue
the cryo-EM studies of TRPM4 and TRPM5 and their pharmacology, combined with complementary
electrophysiology experiments and collaboration with Takeda. The outcome of this proposal will define the
molecular basis for the voltage-dependent gating activity of these ion channels, for ligand recognition, and
for the action of modulators. These advances, in turn, will provide a foundation for developing new therapeutic
agents against cardiovascular diseases and diabetes and for a deeper understanding of the function of the
voltage-gated TRPM family members.
项目概要
从心脏到大脑的血流受到严格调节,以保护脆弱的脑组织,因为不当
血液流动会引起多种心血管疾病和脑损伤。 TRPM4 是主要的之一
细胞内调节脑动脉血管平滑肌细胞血流的演员
压力变化。 TRPM4 的突变或功能障碍与多种心血管疾病有关,
包括中风和布鲁格达综合征。 TRPM4 及其最接近的同源物 TRPM5 是 Ca2+ 激活的,
非选择性电压门控离子通道。 TRPM5 在胰腺 β 细胞中高表达,并且
TRPM5 功能障碍或突变与 II 型糖尿病和肥胖症相关。此外,TRPM4 和
味蕾细胞中的 TRPM5 在味觉信号传导中发挥着重要作用,两个通道的缺失都会导致味觉信号消失
检测苦味、甜味或鲜味刺激的能力。综合起来,TRPM4 和 TRPM5 具有广泛的范围
生理学和病理生理学中的作用。
TRPM4 和 TRPM5 均属于 TRPM(类褪黑素瞬时受体电位)亚家族
TRP超家族中,它们是仅有的两个不透Ca2+的成员。缺乏积极的规范
带电电压感应域使 TRPM4 和 TRPM5 如何感应电压成为一个谜。尽管
TRPM4 和 M5 具有 45% 的氨基酸同一性,在
动力学和药物敏感性方面。武田加利福尼亚公司 (Takeda California, Inc.) 之间已建立合作关系。
和我们的实验室一起研究TRPM5在糖尿病治疗中的重要作用。高亲和力药物具体
针对武田提供的 TRPM5 和未来潜在的药物开发加强了我们的建议
研究这两个通道的药理学。目前,我们不了解分子细节如何
通道以电压依赖性方式激活,它们是如何被小分子调节的
在特定位点与它们结合,如何通过各种药物区分它们,或者它们的通道功能如何
受钙调蛋白等其他蛋白质的调节。
在成功解决第一个封闭状态下的人类 TRPM4 结构的基础上,我们建议继续
TRPM4 和 TRPM5 及其药理学的冷冻电镜研究,结合互补
电生理学实验以及与武田的合作。该提案的结果将定义
这些离子通道的电压依赖性门控活性的分子基础,用于配体识别,以及
对于调制器的作用。这些进展反过来将为开发新的治疗方法奠定基础
对抗心血管疾病和糖尿病的药物,并更深入地了解其功能
电压门控 TRPM 系列成员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
Resolution Doubled Co-Prime Spectral Analyzers for Removing Spurious Peaks
用于消除杂散峰的分辨率加倍的共质光谱分析仪
- DOI:
10.1109/tsp.2016.2526964 - 发表时间:
2016-05 - 期刊:
- 影响因子:5.4
- 作者:
Yiwen Han;Ziyang Yan;Hongyu Xian;Wei Lu - 通讯作者:
Wei Lu
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10421062 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10028649 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10591577 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10573257 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10437844 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10155599 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10208911 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10350691 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10188631 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10656392 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
相似国自然基金
FOXD1-SFRP2及其特异性激动剂在骨关节炎中的功能及作用机制探究
- 批准号:82372438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向STING激动剂和TREM2抑制剂增强PD-1抑制剂对胰腺癌的抗肿瘤作用研究
- 批准号:82303740
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Intermediate Conformations in G Protein-coupled Receptor Signaling
中间构象在 G 蛋白偶联受体信号传导中的作用
- 批准号:
10635763 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Designing safe, potent, and cost-effective small peptide erythropoietin analogs
设计安全、有效且经济有效的小肽促红细胞生成素类似物
- 批准号:
10602271 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
- 批准号:
10566062 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Leucine as a Probe of Kynurenine-Induced Glutamate and Neural Circuit Dysfunction in Midlife Depression
亮氨酸作为犬尿氨酸诱导的谷氨酸和中年抑郁症神经回路功能障碍的探针
- 批准号:
10753154 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Neurosteroid and Cholesterol Binding to Integral Membrane Proteins
神经类固醇和胆固醇与整合膜蛋白的结合
- 批准号:
10623887 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别: