Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
基本信息
- 批准号:10033970
- 负责人:
- 金额:$ 57.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAgonistAmino AcidsBindingBinding SitesBlood flowBrainBrain InjuriesBrugada syndromeCaliforniaCalmodulinCardiacCardiovascular DiseasesChargeCollaborationsComplexCryoelectron MicroscopyDependenceDiabetes MellitusDiseaseDrug TargetingElectrophysiology (science)EnvironmentFamilyFamily memberFoundationsFunctional disorderFutureGlucoseHeartHomologous GeneHumanImmune responseIon ChannelIon Channel GatingIschemic StrokeKineticsKnowledgeLigand BindingLigandsLinkLiposomesMapsMetalsMissionMolecularMutagenesisMutationNon-Insulin-Dependent Diabetes MellitusObesityOutcomePharmaceutical PreparationsPharmacologyPharmacology StudyPhosphatidylinositol 4,5-DiphosphatePhysiologyPlayPolymersPropertyProteinsPublic HealthResearchResearch Project GrantsResolutionRestRoleSignal TransductionSiteSmooth Muscle MyocytesSpecificityStimulusStrokeStructureStructure of beta Cell of isletTRP channelTRPM5 geneTaste Bud CellTaste PerceptionTherapeutic AgentsUnited States National Institutes of HealthVascular Smooth MuscleWorkZebrafishanalogbasebrain tissuecerebral arteryconstrictiondesensitizationdrug actiondrug developmentexperimental studyimpaired glucose toleranceinhibitor/antagonistinsightinsulin secretionmembernanodisknovel therapeuticsparticlepatch clamppreservationpressurereceptorreconstitutionsensorsmall moleculesuccesssweet taste perceptiontaste stimulitaste transductionvoltage
项目摘要
PROJECT SUMMARY
Blood flow from the heart to the brain is strictly regulated to protect the delicate brain tissue, because improper
blood flow can give rise to numerous cardiovascular diseases and brain injuries. TRPM4 is one of the major
actors regulating blood flow in the vascular smooth muscle cells in the cerebral arteries when intracellular
pressure changes. Mutation or dysfunction of TRPM4 is linked to numerous cardiovascular diseases,
including stroke and Brugada syndrome. TRPM4 and its closest homolog, TRPM5, are Ca2+-activated,
nonselective, voltage-gated ion channels. TRPM5 is highly expressed in pancreatic beta cells, and
dysfunction or mutation in TRPM5 is associated in type II diabetes and obesity. In addition, TRPM4 and
TRPM5 in the taste bud cells play an important role in taste signaling, and loss of both channels abolishes
the ability to detect bitter, sweet, or umami stimuli. Taken together, TRPM4 and TRPM5 have a wide range
of roles in physiology and pathophysiology.
Both TRPM4 and TRPM5 belong to the TRPM (melastatin-like transient receptor potential) subfamily of the
TRP superfamily, and they are the only two members impermeable to Ca2+. The lack of a canonical positively
charged voltage-sensing domain makes a mystery of how TRPM4 and TRPM5 sense voltage. Despite
sharing 45% amino acid identity, TRPM4 and M5 have distinct functional and pharmacological properties in
terms of kinetics and sensitivities to drugs. A collaboration has been built between Takeda California, Inc.
and our lab to study the important role of TRPM5 in treatment of diabetes. The high-affinity drugs specifically
targeting TRPM5 provided by Takeda and the potential future drug development strengthen our proposal on
studying the pharmacology of these two channels. At present, we do not understand, in molecular detail, how
the channels are activated in a voltage-dependent manner, how they are modulated by small molecules
binding to them at specific sites, how they are distinguished by various drugs, or how their channel functions
are modulated by other proteins such as calmodulin.
Building on the success of solving the first human TRPM4 structure in closed state, we propose to continue
the cryo-EM studies of TRPM4 and TRPM5 and their pharmacology, combined with complementary
electrophysiology experiments and collaboration with Takeda. The outcome of this proposal will define the
molecular basis for the voltage-dependent gating activity of these ion channels, for ligand recognition, and
for the action of modulators. These advances, in turn, will provide a foundation for developing new therapeutic
agents against cardiovascular diseases and diabetes and for a deeper understanding of the function of the
voltage-gated TRPM family members.
项目摘要
严格调节从心脏到大脑的血液流向大脑,以保护精致的脑组织,因为不当
血流会导致许多心血管疾病和脑损伤。 TRPM4是主要的
细胞内血管平滑肌细胞中血液流动中的血流
压力改变。 TRPM4的突变或功能障碍与许多心血管疾病有关,
包括中风和布鲁加达综合症。 TRPM4及其最接近的同源物TRPM5是Ca2+激活的,
非选择性的电压门控离子通道。 TRPM5在胰腺β细胞中高度表达,并且
TRPM5中的功能障碍或突变与II型糖尿病和肥胖有关。此外,TRPM4和
味蕾细胞中的TRPM5在味觉信号中起重要作用,而两个通道的丧失废除了
检测苦,甜或鲜味刺激的能力。两者合计,TRPM4和TRPM5范围很广
生理学和病理生理学中的作用。
TRPM4和TRPM5均属于TRPM(Melastatin样瞬态受体电位),亚家族
TRP超家族,它们是仅有的两个成员,可用于Ca2+。缺乏正规的积极
带电的电压感应域使TRPM4和TRPM5感应电压是一个谜。尽管
在共享45%的氨基酸身份,TRPM4和M5具有不同的功能和药理特性
动力学和对药物的敏感性的术语。武田加州公司之间建立了合作。
我们的实验室研究了TRPM5在治疗糖尿病中的重要作用。高亲和力的药物
针对Takeda提供的TRPM5和潜在的未来药物开发加强了我们关于
研究这两个渠道的药理学。目前,我们不理解分子的细节
通道以电压依赖性方式激活,如何通过小分子调节它们
在特定地点与它们结合,如何通过各种药物区分它们或它们的通道功能
由其他蛋白质(例如钙调蛋白)调节。
以解决封闭状态下第一个人类TRPM4结构的成功为基础,我们建议继续
TRPM4和TRPM5及其药理学的冷冻EM研究结合了互补
电生理实验和与武田的合作。该提议的结果将定义
这些离子通道的电压依赖性门控活性,配体识别和
用于调节器的作用。这些进步又将为开发新的治疗性提供基础
反对心血管疾病和糖尿病的药物,并更深入地了解
电压门控的TRPM家庭成员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
Resolution Doubled Co-Prime Spectral Analyzers for Removing Spurious Peaks
用于消除杂散峰的分辨率加倍的共质光谱分析仪
- DOI:
10.1109/tsp.2016.2526964 - 发表时间:
2016-05 - 期刊:
- 影响因子:5.4
- 作者:
Yiwen Han;Ziyang Yan;Hongyu Xian;Wei Lu - 通讯作者:
Wei Lu
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10421062 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10028649 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10591577 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10573257 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10437844 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10155599 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10208911 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10350691 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10188631 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10656392 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
- 批准号:82372196
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Intermediate Conformations in G Protein-coupled Receptor Signaling
中间构象在 G 蛋白偶联受体信号传导中的作用
- 批准号:
10635763 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Designing safe, potent, and cost-effective small peptide erythropoietin analogs
设计安全、有效且经济有效的小肽促红细胞生成素类似物
- 批准号:
10602271 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
- 批准号:
10566062 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Leucine as a Probe of Kynurenine-Induced Glutamate and Neural Circuit Dysfunction in Midlife Depression
亮氨酸作为犬尿氨酸诱导的谷氨酸和中年抑郁症神经回路功能障碍的探针
- 批准号:
10753154 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Neurosteroid and Cholesterol Binding to Integral Membrane Proteins
神经类固醇和胆固醇与整合膜蛋白的结合
- 批准号:
10623887 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别: