Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
基本信息
- 批准号:10028649
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-02 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adenosine TriphosphateAnionsApoptoticBindingBinding SitesBiochemicalBiologicalBiological AssayCalciumCaspaseCellsComplexConnexinsConsensusCryoelectron MicroscopyDataDevelopmentDiseaseDyesElectrophysiology (science)EnvironmentExocytosisFamilyFamily StudyFamily memberFoundationsGap JunctionsHumanInflammationIon ChannelIschemiaKnowledgeLinkLipidsMechanicsMembraneMissionMolecularMolecular StructureNeoplasm MetastasisNervous system structureNociceptionOocytesPathologicPermeabilityPharmaceutical PreparationsPharmacologyPhosphorylationPhysiologicalPhysiologyPlayPotassiumProcessPublic HealthReperfusion InjuryReperfusion TherapyResearchRoleSignal TransductionSiteSkeletonSkinSolidStructureSynaptic CleftSynaptic TransmissionTaste PerceptionUnited States National Institutes of HealthWorkbaseblood pressure regulationexperimental studyextracellularglucose uptakeneuron developmentneuroprotectionnovel therapeuticsparticlereceptorsmall moleculetargeted treatmenttherapeutic developmenttherapeutic targettumor
项目摘要
PROJECT SUMMARY
Purinergic signaling plays fundamental roles in activities of the nervous system as diverse as neuroprotection,
synaptic transmission, nociception, inflammation, and taste. This process is initiated by releasing adenosine
triphosphate (ATP) across the membrane through the classic exocytosis or ATP-permeable channels into the
synaptic cleft; the ATP then binds downstream receptors on an adjacent cell. The pannexin family is one of the
key ATP-permeable channels and consists of three family members, PANX1-3. PANX1 is the best characterized
functionally, and it plays crucial roles in a variety of contexts, including blood pressure regulation, glucose uptake,
apoptotic cell clearance, and human oocyte development. Although PANX2 and PANX3 have been less studied
than PANX1, they are important in neuronal development, ischemia-reperfusion injury, and skin/skeleton
development. Thus, the PANX channels have emerged as promising therapeutic targets for a diverse range of
diseases.
The PANX1-3 are nonselective, large-pore ion channels, and they are predicted to share a four-transmembrane-
helix (4-TM) topology with connexins, innexins, and volume-regulated anion channels. Biochemical and
physiological studies provide a consensus view that PANX family members form hexameric channels but do not
form gap junctions. PANX can be modulated by various factors, including mechanical scratch, extracellular
potassium, intracellular calcium, phosphorylation, and caspase-dependent cleavage, but the molecular
mechanisms aren’t known. PANX1 activity is modulated by a wide range of small-molecule compounds, but most
of them are not specifically targeting PANX1. There is currently no well-characterized agent that modulates the
activity of PANX2 and PANX3. Although PANXs are central to human physiology and are potential targets of
therapeutic agents, we do not know their structures. We do not understand, in molecular detail, how the channel
is activated or inhibited, or how it is modulated by small molecules binding at specific sites.
In this proposed work, we will carry out in-depth structural and functional studies of the three pannexin channels
to understand how these molecules work. We have determined the first cryo-EM structure of human PANX1 in
the apo state at 3.7 Å and found a heptameric assembly. We have also shown that human PANX1 can be purified
in a native-like lipid environment. Building on this preliminary data, we propose to continue the structural studies
of these family members, combined with complementary electrophysiology experiments, proteolipsome-based
dye transfer assays, binding assays, and other functional approaches, to define the molecular basis for a
comprehensive gating mechanism. We will also locate the binding sites of various drugs and the molecular basis
underlying their actions on PANX channels, using a combination of structural and functional approaches. These
advances will provide a solid foundation for developing new drugs against PANX-linked diseases and for a
deeper understanding of the function of the ATP release channel family.
项目摘要
嘌呤能信号传导在神经保护和神经保护作用的神经系统活动中起着基本作用,
突触传递,伤害感受,炎症和味道。此过程是通过释放腺苷来启动的
三磷酸(ATP)穿过经典的胞吐作用或ATP渗透通道进入膜
突触裂;然后,ATP在相邻单元格上结合下游接收器。 Pannexin家族是
关键的ATP可渗透渠道,由三个家庭成员Panx1-3组成。 panx1是最好的特征
在功能上,它在多种情况下扮演着至关重要的作用,包括调节血压,葡萄糖摄取,
凋亡细胞清除和人类卵母细胞的发育。尽管PANX2和PANX3较少研究
比PANX1,它们在神经元发育,缺血 - 重新灌注损伤和皮肤/骨骼中很重要
发展。那就出现了PANX渠道,作为承诺的潜水员范围的治疗目标
疾病。
panx1-3是非选择性的大孔离子通道,预计它们具有四跨膜 -
螺旋(4-TM)拓扑,带有连接素,innexins和体积调节的阴离子通道。生化和
生理研究提供了共识的观点,即Panx家族成员形成六聚体渠道,但不
形成间隙连接。 Panx可以通过各种因素调节,包括机械划痕,细胞外
钾,细胞内钙,磷酸化和caspase依赖性清洁,但分子
机制尚不清楚。 PANX1活性由多种小分子化合物调节,但大多数
它们不是专门针对panx1的。当前没有特定的代理可以调节
PANX2和PANX3的活性。尽管PANX是人类生理学的核心,并且是
治疗剂,我们不知道它们的结构。我们不理解分子细节的通道
被激活或抑制,或如何通过特定位点的小分子结合来调节它。
在这项拟议的工作中,我们将对三个泛素通道进行深入的结构和功能研究
了解这些分子如何工作。我们已经确定了人类panx1的第一个冷冻EM结构
Apo状态为3.7Å,发现了一个七聚体组件。我们还表明人可以纯化人Panx1
在类似于本地的脂质环境中。在此初步数据的基础上,我们建议继续进行结构研究
在这些家庭成员中,结合互补的电生理实验,基于蛋白质的基础
染料转移测定,结合测定和其他功能方法,以定义A的分子基础
全面的门控机制。我们还将找到各种药物的结合位点和分子基础
使用结构和功能方法的组合,将其在Panx通道上的行动为基础。这些
进步将为开发针对PANX连接疾病的新药提供坚实的基础,并为
对ATP发行渠道家族功能的更深入了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
Resolution Doubled Co-Prime Spectral Analyzers for Removing Spurious Peaks
用于消除杂散峰的分辨率加倍的共质光谱分析仪
- DOI:
10.1109/tsp.2016.2526964 - 发表时间:
2016-05 - 期刊:
- 影响因子:5.4
- 作者:
Yiwen Han;Ziyang Yan;Hongyu Xian;Wei Lu - 通讯作者:
Wei Lu
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10421062 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10591577 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10573257 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10437844 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10155599 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10208911 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10350691 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10188631 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10033970 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10656392 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
相似国自然基金
钒基氧化物配位阴离子缺陷调控及其储锌机理与动态演变的原子尺度研究
- 批准号:52302322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阴离子氧化还原活性锰基层状正极材料的结构稳定化构型设计与电荷补偿机理研究
- 批准号:22309085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
储钠负极材料中的阴离子氧化还原反应机制研究
- 批准号:22305210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
富锂锰基正极中阴离子氧化还原机制的界面效应研究
- 批准号:22309097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-Time Monitoring and Scavenging of Reactive Oxygen Species (ROS) to Enhance Cochlear Implantation Outcomes
实时监测和清除活性氧 (ROS) 以提高人工耳蜗植入效果
- 批准号:
10515333 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10208911 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10437844 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10656392 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Enzyme-loaded nanoparticles for neonatal neuroprotection
用于新生儿神经保护的载酶纳米粒子
- 批准号:
10194572 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别: