IRaman: Breakthrough biomedical microscope with simultaneous infrared and Raman spectroscopy at sub-micron spatial resolution

IRaman:具有亚微米空间分辨率同时红外和拉曼光谱的突破性生物医学显微镜

基本信息

  • 批准号:
    10006670
  • 负责人:
  • 金额:
    $ 81.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

This Phase II proposal aims to develop and commercialize IR+Raman a breakthrough instrument that will for the first time enable simultaneous infrared (IR) and Raman spectroscopy on the same instrument with sub-micron spatial resolution. This project is well aligned with NIH goals as it incorporates several key thrusts of the National Institute of Biomedical Imaging and Bioengineering, including optical imaging and spectroscopy, infrared imaging, confocal microscopy, and multimodal imaging. IR and Raman have gained interest in investigating the composition and molecular structure of biological materials as they operate label free and are sensitive towards macromolecular composition, such as proteins, lipids, nucleic acids and carbohydrates, as well as the detection of isotopic labelling of these macromolecules and even smaller metabolites. Both Infrared and Raman spectroscopies are widely used in analytical laboratories and are often referred to as “complementary techniques” as they both probe different types of molecular vibrations. For example, IR spectroscopy is very sensitive to protein secondary structure, whereas Raman is particularly sensitive to lipids as well as certain amino acids. And in pharma applications Raman is more sensitive to drugs, whereas IR is more sensitive to excipients (additives) that often have weak Raman signals and/or have large fluorescent backgrounds. Raman can achieve sub-micron spatial resolution, but IR is limited by the longer excitation wavelengths to spatial resolution ~10 um. This project aims to overcome this limitation by providing IR and Raman spectroscopy, both at sub-micron spatial resolution. A compelling recent example of the power of the multimodal combination of IR and Raman in health sciences involved analysis of malaria parasite infected red blood cells (D. Perez-Guaita et al Vib. Spectrosc. 91, 46-58 (2017)). The research showed “that the combination of both techniques provides complementary information not evident” using the techniques individually. This research was performed however using a painstaking process of separately and sequentially measuring the exact same cell locations in two different instruments, requiring substantial additional time and cost. This proposal aims to develop an instrument that makes simultaneous IR and Raman measurements simple, robust, and routine. This project will leverage successful Phase I research to develop and commercialize a new optical microscope-based platform that can perform simultaneous IR and Raman on the same instrument. The project will involve a collaboration between proposer Photothermal Spectroscopy Corp and Dr. Ji-Xin Cheng (Boston University) and Dr. Lynne Taylor (Purdue). The team at photothermal will design and build a next generation IR+Raman instrument to overcome key limitations and expand the capabilities over the prototype developed in Phase I. The two year project will develop alpha and beta prototype units for applications testing at Photothermal’s applications lab in Santa Barbara, CA, and will install a beta unit in the labs of Prof. Lynne Taylor at Purdue University, with a focus on demonstrating applicability of IR+Raman to key problems in pharmaceutical sciences. Photothermal scientists will also collaborate closely with Prof. Cheng’s group at Boston University in cell biology, specifically related to investigate antibody susceptibility at the single bacterium level. The beta IR+Raman will also be used to investigate other applications in cells/tissue and microplastics characterization.
该第二阶段提案旨在开发红外+拉曼这一突破性仪器并将其商业化,该仪器将首次 在同一台仪器上同时实现红外 (IR) 和拉曼光谱分析,具有亚微米空间分辨率。 该项目与 NIH 的目标非常一致,因为它融合了国家生物医学研究所的几个关键目标 成像和生物工程,包括光学成像和光谱学、红外成像、共焦显微镜和 红外和拉曼成像对研究其组成和分子结构产生了兴趣。 生物材料,因为它们无需标记,并且对大分子成分敏感,例如蛋白质、 脂质、核酸和碳水化合物,以及这些大分子的同位素标记检测,甚至 红外光谱和拉曼光谱都广泛用于分析实验室,并且经常使用。 被称为“互补技术”,因为它们都探测不同类型的分子振动,例如红外。 光谱对蛋白质二级结构非常敏感,而拉曼对脂质以及 在制药应用中,拉曼对药物更敏感,而红外对某些氨基酸更敏感。 通常具有弱拉曼信号和/或具有大荧光背景的赋形剂(添加剂)可以实现。 亚微米空间分辨率,但红外受到较长激发波长的限制,空间分辨率约为 10 微米。 该项目旨在通过提供亚微米空间分辨率的红外和拉曼光谱来克服这一限制。 最近一个引人注目的例子展示了红外和拉曼多模式组合在健康科学领域的力量 疟疾寄生虫感染红细胞的分析(D. Perez-Guaita et al Vib. Spectrosc. 91, 46-58 (2017))。 使用这些技术表明“两种技术的结合提供了不明显的补充信息” 然而,这项研究是通过单独和顺序测量的艰苦过程进行的。 两个不同仪器中完全相同的单元位置,需要大量额外的时间和成本。 旨在开发一种仪器,使同步红外和拉曼测量变得简单、稳健和常规。 该项目将利用成功的第一阶段研究来开发和商业化一种新的基于光学显微镜的 可以在同一台仪器上同时执行红外和拉曼的平台该项目将涉及合作。 提案者光热光谱公司和 Ji-Xin Cheng 博士(波士顿大学)和 Lynne Taylor 博士之间 (普渡大学)光热团队将设计和建造下一代红外+拉曼仪器来克服关键问题。 限制并扩展第一阶段开发的原型的功能。这个为期两年的项目将开发阿尔法 和 beta 原型装置,用于在位于加利福尼亚州圣巴巴拉的光热应用实验室进行应用测试,并将安装 普渡大学 Lynne Taylor 教授实验室的 beta 单元,重点展示 IR+Raman 的适用性 光热科学家也将与程教授的团队密切合作。 波士顿大学细胞生物学专业,特别与研究单细菌水平的抗体敏感性有关。 β IR+拉曼光谱还将用于研究细胞/组织和微塑料表征中的其他应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Prater其他文献

Craig Prater的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Prater', 18)}}的其他基金

Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10543927
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR)-breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR)——同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10253663
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10693270
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:

相似国自然基金

中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
  • 批准号:
    82370423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
  • 批准号:
    82360519
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
  • 批准号:
    22372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
  • 批准号:
    10733264
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
Molecular basis of decreased susceptibility to beta-lactam antibiotics in Streptococcus pyogenes
化脓性链球菌对β-内酰胺类抗生素敏感性降低的分子基础
  • 批准号:
    10596614
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
Molecular basis of decreased susceptibility to beta-lactam antibiotics in Streptococcus pyogenes
化脓性链球菌对β-内酰胺类抗生素敏感性降低的分子基础
  • 批准号:
    10449481
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
Identification of potentiators of antimicrobial activity against multidrug-resistant Burkholderia cepacia complex infections in cystic fibrosis
囊性纤维化中多重耐药洋葱伯克霍尔德杆菌复合感染抗菌活性增强剂的鉴定
  • 批准号:
    10358653
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
  • 批准号:
    10220711
  • 财政年份:
    2020
  • 资助金额:
    $ 81.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了