IRaman: Breakthrough biomedical microscope with simultaneous infrared and Raman spectroscopy at sub-micron spatial resolution

IRaman:具有亚微米空间分辨率同时红外和拉曼光谱的突破性生物医学显微镜

基本信息

  • 批准号:
    10006670
  • 负责人:
  • 金额:
    $ 81.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

This Phase II proposal aims to develop and commercialize IR+Raman a breakthrough instrument that will for the first time enable simultaneous infrared (IR) and Raman spectroscopy on the same instrument with sub-micron spatial resolution. This project is well aligned with NIH goals as it incorporates several key thrusts of the National Institute of Biomedical Imaging and Bioengineering, including optical imaging and spectroscopy, infrared imaging, confocal microscopy, and multimodal imaging. IR and Raman have gained interest in investigating the composition and molecular structure of biological materials as they operate label free and are sensitive towards macromolecular composition, such as proteins, lipids, nucleic acids and carbohydrates, as well as the detection of isotopic labelling of these macromolecules and even smaller metabolites. Both Infrared and Raman spectroscopies are widely used in analytical laboratories and are often referred to as “complementary techniques” as they both probe different types of molecular vibrations. For example, IR spectroscopy is very sensitive to protein secondary structure, whereas Raman is particularly sensitive to lipids as well as certain amino acids. And in pharma applications Raman is more sensitive to drugs, whereas IR is more sensitive to excipients (additives) that often have weak Raman signals and/or have large fluorescent backgrounds. Raman can achieve sub-micron spatial resolution, but IR is limited by the longer excitation wavelengths to spatial resolution ~10 um. This project aims to overcome this limitation by providing IR and Raman spectroscopy, both at sub-micron spatial resolution. A compelling recent example of the power of the multimodal combination of IR and Raman in health sciences involved analysis of malaria parasite infected red blood cells (D. Perez-Guaita et al Vib. Spectrosc. 91, 46-58 (2017)). The research showed “that the combination of both techniques provides complementary information not evident” using the techniques individually. This research was performed however using a painstaking process of separately and sequentially measuring the exact same cell locations in two different instruments, requiring substantial additional time and cost. This proposal aims to develop an instrument that makes simultaneous IR and Raman measurements simple, robust, and routine. This project will leverage successful Phase I research to develop and commercialize a new optical microscope-based platform that can perform simultaneous IR and Raman on the same instrument. The project will involve a collaboration between proposer Photothermal Spectroscopy Corp and Dr. Ji-Xin Cheng (Boston University) and Dr. Lynne Taylor (Purdue). The team at photothermal will design and build a next generation IR+Raman instrument to overcome key limitations and expand the capabilities over the prototype developed in Phase I. The two year project will develop alpha and beta prototype units for applications testing at Photothermal’s applications lab in Santa Barbara, CA, and will install a beta unit in the labs of Prof. Lynne Taylor at Purdue University, with a focus on demonstrating applicability of IR+Raman to key problems in pharmaceutical sciences. Photothermal scientists will also collaborate closely with Prof. Cheng’s group at Boston University in cell biology, specifically related to investigate antibody susceptibility at the single bacterium level. The beta IR+Raman will also be used to investigate other applications in cells/tissue and microplastics characterization.
该第二阶段提案旨在开发和商业化IR+Raman,这是一种突破性的工具 在具有亚微米空间分辨率的同一仪器上启用简单红外(IR)和拉曼光谱。 该项目与NIH目标非常一致,因为它结合了国家生物医学研究所的几个关键推力 成像和生物工程,包括光学成像和光谱,红外成像,共聚焦显微镜和 多模式成像。 IR和Raman对研究的组成和分子结构具有兴趣 生物材料无效,并且对大分子成分(例如蛋白质)敏感 脂质,核酸和碳氢化物,以及这些大分子的同位素标记,甚至检测 较小的代谢物。红外和拉曼光谱均广泛用于分析实验室,通常是 它们都称为“互补技术”,因为它们都探测了不同类型的分子振动。例如,IR 光谱法对蛋白质二级结构非常敏感,而拉曼对脂质特别敏感 某些氨基酸。在制药应用中,拉曼对药物更敏感,而IR对 赋形剂(添加剂)通常具有较弱的拉曼信号和/或具有较大的荧光背景。拉曼可以实现 亚微米空间分辨率,但IR受到空间分辨率较长的刺激波长的限制。这 项目旨在通过在亚微米空间分辨率下提供IR和拉曼光谱来克服这一局限性。 IR和拉曼在健康科学中的多模式组合的力量的最令人信服的例子 分析疟疾寄生虫感染的红细胞(D. Perez-Guaita等人Vib。Spectrosc。91,46-58(2017))。研究 展示了使用这些技术的“两种技术的组合都提供了完整的信息,而不是证据” 单独。但是,使用单独和顺序测量的艰苦过程进行了这项研究 在两种不同的仪器中完全相同的单元格位置,需要大量的额外时间和成本。这个建议 旨在开发一种使简单的IR和拉曼测量简单,健壮和常规的仪器。 该项目将利用成功的I期研究来开发和商业化基于光学显微镜的新 可以在同一仪器上同时执行IR和拉曼的平台。该项目将涉及合作 在Proposal Phototermal Spectroscophy Corp和Ji-Xin Cheng(波士顿大学)和Lynne Taylor博士之间 (普渡大学)。 Photothermal的团队将设计和建造下一代IR+拉曼仪器以克服密钥 限制并扩展了第I期中开发的原型的功能 以及在加利福尼亚州圣塔芭芭拉(Santa Barbara 普渡大学Lynne Taylor教授实验室的Beta单位,重点是证明IR+Raman的适用性 药物科学的关键问题。光热科学家还将与Cheng教授的小组密切合作 在波士顿大学的细胞生物学,特别与研究单细菌水平研究抗体易感性有关。 Beta IR+拉曼还将用于研究细胞/组织和微塑料表征中的其他应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Prater其他文献

Craig Prater的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Prater', 18)}}的其他基金

Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10543927
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR)-breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR)——同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10253663
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
  • 批准号:
    10693270
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:

相似国自然基金

氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
  • 批准号:
    32371222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
  • 批准号:
    82300940
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
  • 批准号:
    82301621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
  • 批准号:
    82373354
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Structural determinants of activity and mechanism of cationic peptide antibiotic activity against colistin-resistant bacteria
阳离子肽抗生素对粘菌素耐药菌活性的结构决定因素和机制
  • 批准号:
    10733264
  • 财政年份:
    2023
  • 资助金额:
    $ 81.71万
  • 项目类别:
Molecular basis of decreased susceptibility to beta-lactam antibiotics in Streptococcus pyogenes
化脓性链球菌对β-内酰胺类抗生素敏感性降低的分子基础
  • 批准号:
    10596614
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
Molecular basis of decreased susceptibility to beta-lactam antibiotics in Streptococcus pyogenes
化脓性链球菌对β-内酰胺类抗生素敏感性降低的分子基础
  • 批准号:
    10449481
  • 财政年份:
    2022
  • 资助金额:
    $ 81.71万
  • 项目类别:
Identification of potentiators of antimicrobial activity against multidrug-resistant Burkholderia cepacia complex infections in cystic fibrosis
囊性纤维化中多重耐药洋葱伯克霍尔德杆菌复合感染抗菌活性增强剂的鉴定
  • 批准号:
    10358653
  • 财政年份:
    2021
  • 资助金额:
    $ 81.71万
  • 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
  • 批准号:
    10220711
  • 财政年份:
    2020
  • 资助金额:
    $ 81.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了