Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
基本信息
- 批准号:10028808
- 负责人:
- 金额:$ 34.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseArchitectureBacterial ToxinsBiochemicalBioinformaticsBiophysicsBlood - brain barrier anatomyCell AdhesionCell membraneCellsChargeComplexDevelopmentDiseaseEar DiseasesEndothelial CellsEndotheliumEnvironmentEpidermisEpithelialEpithelial CellsEpitheliumExtracellular SpaceEye diseasesFamilyFood PoisoningFunctional disorderGlandGoalsHepatitisHumanHuntington DiseaseIndividualInflammatory Bowel DiseasesIntegral Membrane ProteinIonsKidneyKnowledgeLaboratoriesLimb structureLinkMalignant NeoplasmsMembraneMembrane ProteinsModificationMolecularMolecular ConformationMolecular DiseaseMolecular StructureOrganOrganismParkinson DiseasePathologyPermeabilityProteinsResearchShapesSideStrokeStructureTight JunctionsTissuesTransport ProcessVertebratesbasedesignexperimental studyfamily structureinsightinterdisciplinary approachmacromolecular assemblymembrane assemblynovel therapeuticsprogramsreconstructionscaffoldskin disordersmall moleculestructural biologywasting
项目摘要
Project Summary
Tight junctions (TJs) at the boundaries of endothelial and epithelial cells are critical in the development and
function of vertebrates because they enable these tissues to separate, protect, and shape external epidermis
and limbs and internal organs and glands. TJs regulate molecular transport through the spaces between
individual cells (paracellular) while adhering cellular sheets. TJs perform two vital functions in tissues: 1) form
barriers to restrict paracellular flux of small molecules, protecting organisms from the external environment and
separating internal body compartments; and 2) creating size- and charge-selective pores, allowing permeability
of ions that maintain electrochemical gradients. Numerous proteins amass at TJs to form the macromolecular
assemblies necessary for barrier and pore function. But two families of membrane proteins—claudins and
TAMPs (TJ-associated Marvel proteins)—predominate TJ assembly, architecture, and function. As these TJ
integral membrane proteins (TJIMPs) are the sole components to span intracellular, intramembraneous, and
extracellular space, they act as cytoskeletal scaffolds and assemble side-by-side within a membrane (cis) and
with TJIMPs from adjacent cell membranes (trans) to form barriers and pores. The molecular structure of TJs
is dynamic. Changes in protein composition, interaction, conformation, or modification—useful for assembling
TJs to precisely tune paracellular transport under normal conditions—can also be mis-assembled, resulting in
pathologies such as cancer, Alzheimer’s, Parkinson’s, Huntington’s, ALS, stroke, food poisoning and
inflammatory bowel disease, renal wasting, hepatitis, and diseases of the skin, eyes, and ears. Molecular level
insights into TJ structure and dynamics; the mechanisms of assembly that govern barrier and pore function;
and how disabling these mechanisms leads to pathologies, remain unresolved matters in our fundamental
understanding of TJs. We propose here a comprehensive research program that uses highly interdisciplinary
approaches to determine structure–interaction–function relationships between TJIMPs at dynamic TJ
microenvironments. These approaches integrate structural biology of TJIMPs and their complexes with
information obtained by traditional and state-of-the-art bioinformatics, biochemical, biophysical, and functional
experiments. The research program intends to resolve the underlying molecular principles of TJ assembly and
disassembly by confronting technical challenges and, in the near-term, by answering specific questions on
TJIMP interaction networks, the basis of gut barrier breakdown by a bacterial toxin, and the mechanisms of
TJIMP form and function at the blood-brain barrier. The long-term goal of our laboratory is to elucidate the
molecular bases for construction, destruction, and reconstruction of TJs, occurring both naturally or via
disease-causing mechanisms, and to use the achieved insights to advance design and development of novel
therapeutics to remedy TJ-related ailments.
项目概要
内皮细胞和上皮细胞边界处的紧密连接(TJ)对于细胞的发育和发育至关重要。
脊椎动物的功能,因为它们使这些组织能够分离、保护和塑造外表皮
TJ 调节四肢、内脏和腺体之间的分子运输。
单个细胞(细胞旁细胞)在粘附细胞片时在组织中执行两个重要功能:1)形成。
限制小分子旁细胞通量的屏障,保护生物体免受外部环境的影响
分隔内部身体隔室;2) 形成尺寸和电荷选择性的孔,从而实现渗透性
维持电化学梯度的离子数量众多的蛋白质在 TJ 处聚集形成大分子。
屏障和孔功能所必需的组装体,但有两个膜蛋白家族——密蛋白和
TAMP(TJ 相关 Marvel 蛋白)— 主导 TJ 的组装、结构和功能。
整合膜蛋白 (TJIMP) 是跨越细胞内、膜内和细胞膜的唯一成分。
在细胞外空间,它们充当细胞骨架支架并在膜内并排组装(顺式)和
与相邻细胞膜(反式)的 TJIMP 形成屏障和孔 TJ 的分子结构。
蛋白质组成、相互作用、构象或修饰的变化——对于组装有用。
在正常条件下精确调节旁细胞运输的 TJ 也可能被错误组装,导致
癌症、阿尔茨海默氏症、帕金森氏症、亨廷顿氏症、ALS、中风、食物中毒等病症
炎症性肠病、肾衰竭、肝炎以及皮肤、眼睛和耳朵的疾病。
深入了解 TJ 结构和动力学;控制屏障和孔隙功能的组装机制;
以及如何禁用这些机制会导致病态,这在我们的根本问题中仍然是悬而未决的问题
我们在这里提出了一个利用高度跨学科的综合研究计划。
确定动态 TJ 下 TJIMP 之间结构-相互作用-功能关系的方法
这些方法将 TJIMP 及其复合物的结构生物学与
通过传统和最先进的生物信息学、生物化学、生物物理和功能学获得的信息
该研究计划旨在解决 TJ 组装和的基本分子原理。
通过面对技术挑战并在短期内回答具体问题来进行拆卸
TJIMP 相互作用网络、细菌毒素破坏肠道屏障的基础及其机制
TJIMP 在血脑屏障中的形式和功能 我们实验室的长期目标是阐明 TJIMP 的形式和功能。
TJ 的构建、破坏和重建的分子基础,无论是自然发生还是通过
致病机制,并利用所获得的见解来推进新型药物的设计和开发
治疗 TJ 相关疾病的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex J. Vecchio其他文献
Alex J. Vecchio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex J. Vecchio', 18)}}的其他基金
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10224277 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10459311 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10389581 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structure and assembly of membrane proteins at tight junctions
紧密连接处膜蛋白的结构和组装
- 批准号:
10703392 - 财政年份:2020
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8397606 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8727069 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
Structural and Functional Investigation of Tight Junction Membrane Proteins
紧密连接膜蛋白的结构和功能研究
- 批准号:
8565650 - 财政年份:2012
- 资助金额:
$ 34.94万 - 项目类别:
相似国自然基金
面向脑疾病高效可信诊断的多模态时空数据挖掘
- 批准号:62376065
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于老年慢性乙肝患者共病模式构建疾病负担动态变化预测模型
- 批准号:82304246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肺部疾病识别的噪声标签学习方法研究
- 批准号:62302032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向胃肠道疾病准确筛查的内窥镜视频质量评价方法研究
- 批准号:62371305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别:
Specificity of ABCA7-mediated lipid efflux and its effects on intracellular lipid metabolism in neural cells
ABCA7介导的脂质流出的特异性及其对神经细胞细胞内脂质代谢的影响
- 批准号:
10591201 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 34.94万 - 项目类别: