Oligonucleotide-directed in situ proximity biotinylation: a unified method for mapping RNA-interacting proteomes, transcriptomes and genomic loci within intact cells.
寡核苷酸引导的原位邻近生物素化:一种绘制完整细胞内 RNA 相互作用蛋白质组、转录组和基因组位点的统一方法。
基本信息
- 批准号:10029882
- 负责人:
- 金额:$ 33.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAffinityAntisense OligonucleotidesArchitectureBindingBiochemicalBiologicalBiological ModelsBiologyBiotinylationCell Culture TechniquesCell LineCell NucleolusCell physiologyCellsCellular biologyChemicalsClinicalCodeComplexDNADNA sequencingDataDevelopmentDiseaseEmbryonic DevelopmentEngineeringEnzymesExhibitsFractionationGene ExpressionGenomicsGoalsHuman PathologyHybridsImageIn SituIndividualInfectionInterphase CellKineticsLaboratoriesLengthMalignant NeoplasmsMammalian CellMapsMessenger RNAMetabolic stressMethodsModelingMolecularMonitorNeurodegenerative DisordersNoiseNuclearNucleic Acid ProbesOligonucleotidesOrganellesOrganismPlayProteinsProteomeProteomicsProtocols documentationRNARNA ProbesRNA analysisResolutionResourcesRoleSamplingSpecificityStreptavidinStructureTechniquesTechnologyTestingTransgenic OrganismsUntranslated RNAViral PathogenesisX Inactivationbasebiological adaptation to stresscell typeclinically relevantdesignexperimental studyfield studygenetic manipulationgenomic locushuman diseasemolecular assembly/self assemblyneurotransmissionnovelportabilityprogramsrRNA Precursorrecruitresponsescaffoldsingle moleculetherapeutic targettooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY
Throughout biology, RNA molecules form complex and dynamic networks of molecular interactions that are
essential to their function, but which remain challenging to investigate. These networks of RNA-interacting
proteins, RNAs, and genomic loci regulate nearly all aspects of mRNA function, enable noncoding RNAs that
regulate gene expression at various levels, and scaffold molecular assemblies that control cellular gene-
expression, metabolic, and stress-response programs. Dysregulation of RNA-interactions has been causally
implicated in numerous human pathologies, suggesting that these interactions may represent a significant
class of untapped therapeutic targets. Yet, despite the central importance of RNA to basic biology and human
disease, methods for elucidating the factors that interact with any given RNA remain limited. Current state-of-
the-art approaches—which use biotinylated antisense oligonucleotides to pull down target RNAs from crude
cell lysates—are noisy, suffer from low target RNA specificity, and lack biological context. Emerging strategies
that use transgenically expressed enzymes to affinity-tag RNA-interactors in situ require complicated cell-line
engineering that limits their applicability across cell types and target RNAs. Therefore, there is a pressing need
for straightforward and generalizable tools that can elucidate intra-cellular RNA-interactions at high resolution,
without cumbersome biochemical fractionation or cell-line engineering. To meet this challenge, and in
response to RFA PAR 19-253, this proposal will develop Oligonucleotide-Directed Biotinylation (ODB). This
novel technique combines high-resolution single-molecule RNA-FISH and in situ proximity-biotinylation to map
RNA interaction networks within their native cellular context. In pilot experiments, ODB exhibited exceptionally
precise targeting of individual RNAs in situ, and enabled proteomic analysis of RNA-scaffolded structures that
are difficult to isolate biochemically. We have also recently demonstrated that proximity-biotinylation
approaches like ODB can be used to probe nucleic acids as well as proteins. Given these promising proof-of-
principle results, we propose developing ODB into a unified, “multi-‘omic” method for identifying the proteins,
RNAs, and/or genomic loci that interact with a broad range of target RNAs. In Aim 1, we will optimize the core
steps of the ODB workflow, developing robust protocols for deploying ODB to a target RNA at high spatial
precision, and for isolating RNA-interacting proteins, RNAs, and genomic loci from an ODB experiment. We will
develop general-use strategies for applying ODB in an array of different mammalian cell lines and RNA targets.
In Aim 2, we will “field test” ODB on a dynamic, developmentally-regulated nuclear-architectural RNA that has
been difficult to characterize by conventional approaches. These experiments will develop a versatile and
straightforward technology for interrogating RNA interactions in situ, and which is easily adoptable by most
laboratories. Given the pervasive roles played by RNA throughout biology, this transformative method will pave
the way for paradigm-shifting discoveries in cell biology, and reveal novel RNA-based therapeutic targets.
项目概要
在整个生物学中,RNA 分子形成复杂且动态的分子相互作用网络
它们的功能至关重要,但研究这些 RNA 相互作用网络仍然具有挑战性。
蛋白质、RNA 和基因组位点调节 mRNA 功能的几乎所有方面,使非编码 RNA 能够
在不同水平上调节基因表达,并支架控制细胞基因的分子组装体
RNA相互作用的失调是因果关系。
与许多人类病理有关,表明这些相互作用可能代表着重要的
然而,尽管 RNA 对基础生物学和人类至关重要。
疾病,阐明与任何给定 RNA 相互作用的因素的方法仍然有限。
最先进的方法——使用生物素化的反义寡核苷酸从粗产物中提取目标RNA
细胞裂解物——噪音大,靶标 RNA 特异性低,并且缺乏新兴的生物学策略。
使用转基因表达的酶原位亲和标记 RNA 相互作用物需要复杂的细胞系
工程限制了它们在细胞类型和靶标 RNA 上的适用性,因此迫切需要。
寻找能够以高分辨率阐明细胞内 RNA 相互作用的简单且通用的工具,
无需繁琐的生化分离或细胞系工程即可应对这一挑战。
为了响应 RFA PAR 19-253,该提案将开发寡核苷酸定向生物素化 (ODB)。
新技术结合了高分辨率单分子 RNA-FISH 和原位邻近生物素化来绘制图谱
在试点实验中,ODB 在其天然细胞环境中表现出异常出色的 RNA 相互作用网络。
原位精确靶向单个 RNA,并对 RNA 支架结构进行蛋白质组学分析
我们最近还证明了邻近生物素化。
鉴于这些有希望的证据,ODB 等方法可用于探测核酸和蛋白质。
结果,我们建议 ODB 开发原理成为一种统一的“多组学”方法来识别蛋白质,
RNA 和/或与多种目标 RNA 相互作用的基因组位点 在目标 1 中,我们将优化核心。
ODB 工作流程的步骤,开发用于将 ODB 部署到高空间目标 RNA 的稳健协议
精度,以及从 ODB 实验中分离 RNA 相互作用蛋白、RNA 和基因组位点。
开发在一系列不同哺乳动物细胞系和 RNA 靶标中应用 ODB 的通用策略。
在目标 2 中,我们将在动态的、发育调控的核结构 RNA 上“现场测试”ODB,该 RNA 具有
这些实验很难用传统方法来表征。
原位检测 RNA 相互作用的简单技术,并且很容易被大多数人采用
鉴于 RNA 在整个生物学中发挥的普遍作用,这种变革性方法将为实验室铺平道路。
细胞生物学范式转变的发现之路,并揭示新的基于 RNA 的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Michael Shechner其他文献
David Michael Shechner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Michael Shechner', 18)}}的其他基金
Oligonucleotide-directed in situ proximity biotinylation: a unified method for mapping RNA-interacting proteomes, transcriptomes and genomic loci within intact cells.
寡核苷酸引导的原位邻近生物素化:一种绘制完整细胞内 RNA 相互作用蛋白质组、转录组和基因组位点的统一方法。
- 批准号:
10620766 - 财政年份:2020
- 资助金额:
$ 33.82万 - 项目类别:
Oligonucleotide-directed in situ proximity biotinylation: a unified method for mapping RNA-interacting proteomes, transcriptomes and genomic loci within intact cells.
寡核苷酸引导的原位邻近生物素化:一种绘制完整细胞内 RNA 相互作用蛋白质组、转录组和基因组位点的统一方法。
- 批准号:
10404121 - 财政年份:2020
- 资助金额:
$ 33.82万 - 项目类别:
Oligonucleotide-directed in situ proximity biotinylation: a unified method for mapping RNA-interacting proteomes, transcriptomes and genomic loci within intact cells.
寡核苷酸引导的原位邻近生物素化:一种绘制完整细胞内 RNA 相互作用蛋白质组、转录组和基因组位点的统一方法。
- 批准号:
10247689 - 财政年份:2020
- 资助金额:
$ 33.82万 - 项目类别:
相似国自然基金
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
- 批准号:82373150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
IL-32通过FAT4介导调控Hippo/YAP信号通路在椎间盘退变中的作用及机制研究
- 批准号:82302737
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMN通过肠道活泼瘤胃球菌调控猪胆酸-GLP-1通路改善PCOS的机制研究
- 批准号:32300989
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
徐氏抑肝扶脾方通过ATP/P2X2-TRPV1信号通路调控肠胶质细胞自噬减轻肝郁脾虚型IBS-D神经炎症的机制研究
- 批准号:82305135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Mechanisms and therapeutic targeting of osteoimmune functions of RANKL in breast cancer
RANKL在乳腺癌中的骨免疫功能的机制和治疗靶点
- 批准号:
10586000 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别: