Integrative Brain Network-Based Analysis for Heterogeneous and Multimodal Neuroimaging Data
基于综合脑网络的异构和多模态神经影像数据分析
基本信息
- 批准号:10002306
- 负责人:
- 金额:$ 40.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAffectAlgorithmsAnatomyAttentionBayesian MethodBehavioralBiologicalBiomedical ResearchBrainCategoriesClinicalClinical DataCommunitiesComputer softwareDataData SetDevelopmentDiffusion Magnetic Resonance ImagingDiseaseEffectivenessEnvironmental ExposureFiberFunctional Magnetic Resonance ImagingGoalsHeterogeneityIndividualInformation NetworksJointsKnowledgeLiteratureMeasurementMental disordersMethodologyMethodsModelingMultimodal ImagingNetwork-basedNeurosciencesOutcomePopulationPost-Traumatic Stress DisordersRegression AnalysisResearchResearch PersonnelSample SizeSamplingShapesStructureSubgroupSymptomsTestingTranslational ResearchTraumaValidationVisualizationbasebehavior measurementcohortconnectomeheterogenous datahigh dimensionalityinnovationinterestmultimodalitynetwork modelsneural circuitneurobiological mechanismneuroimagingnovelnovel strategiesopen sourcepatient subsetspredict clinical outcomeresponsesimulationsoftware developmentstemtooltrauma exposureuser-friendlywhite matter
项目摘要
PROJECT SUMMARY
This proposal develops state of the art approaches for addressing challenging questions related to the
neurobiological mechanisms affecting clinical outcomes of interest in the presence of heterogeneity represented
by underlying disease sub-categories and variability in symptoms and other relevant variables across individuals.
We focus on developing integrative approaches for brain connectome based analyses, which combines the multi-
modal imaging (e.g. fMRI and diffusion MRI) of brain function and structure, clinical and behavioral measures,
while accounting for heterogeneity across samples. Our goals involve important questions in neuroscience which
have received limited or no attention so far, such as estimating dynamic brain connectivity while incorporating
brain anatomical structure, and subsequently examining which dynamic functional connections drive the clinical
outcome, accounting for heterogeneity in terms of disease sub-categories when predicting the clinical outcome
based on brain measurements which lie on an underlying brain network, and investigating differences in shapes
of white matter fiber bundles which drive the clinical outcome. To address such challenging goals, we develop
state-of-the-art statistical approaches which incorporate significant innovations and rely on multi-modal
neuroimaging data and uses biologically informed priors which yield meaningful solutions. The motivating dataset
is the Grady Trauma Project, which contains neuroimaging, behavioral, and clinical data on subjects who were
exposed to trauma and developed some degree of PTSD. We will test our approaches on an external PTSD
validation dataset from the ENIGMA-PTSD-PGC consortium. Our methodology development will include
proposing novel approaches for (a) the joint modeling of multiple graphical models using network-valued
regression; (b) using brain anatomical knowledge to inform the estimation of dynamic connectivity and
subsequently using the dynamic functional connections to predict the clinical outcome of interest; (c) developing
novel approaches for the joint estimation of multiple regression models corresponding to varying subgroups while
incorporating network information characterizing the covariates, and (d) developing Bayesian approaches for 3-
dimensional shape estimation for fiber tracts in the brain using anatomically informed priors, and subsequently
using the shapes of the estimated fiber bundles to predict the clinical outcomes of interest. We also develop a
robust strategy for the validation of the proposed methods and we also provide an outline for developing software
and sharing them openly with researchers and interested parties. This application addresses several clinical
significant questions in neuroimaging research which have not been explored before due to the lack of state of
the art statistical methodology, and is expected to make important methodological, scientific, clinical and
translational contributions.
.
项目概要
该提案开发了最先进的方法来解决与
在存在异质性的情况下影响感兴趣的临床结果的神经生物学机制
通过潜在的疾病子类别和症状的变异性以及个体之间的其他相关变量。
我们专注于开发基于大脑连接组的分析的综合方法,该方法结合了多种方法
脑功能和结构、临床和行为测量的模态成像(例如功能磁共振成像和扩散磁共振成像),
同时考虑样本之间的异质性。我们的目标涉及神经科学中的重要问题
到目前为止受到的关注有限或没有受到关注,例如在整合的同时估计动态大脑连接
大脑解剖结构,然后检查哪些动态功能连接驱动临床
结果,在预测临床结果时考虑疾病子类别的异质性
基于底层大脑网络的大脑测量,并研究形状差异
驱动临床结果的白质纤维束。为了解决这些具有挑战性的目标,我们开发
最先进的统计方法,融合了重大创新并依赖于多模式
神经影像数据并使用生物学知识先验,从而产生有意义的解决方案。激励数据集
是格雷迪创伤项目,其中包含接受过创伤治疗的受试者的神经影像、行为和临床数据。
遭受创伤并出现一定程度的创伤后应激障碍(PTSD)。我们将在外部 PTSD 上测试我们的方法
来自 ENIGMA-PTSD-PGC 联盟的验证数据集。我们的方法开发将包括
提出新方法(a)使用网络值对多个图形模型进行联合建模
回归; (b)利用大脑解剖知识来估计动态连接性和
随后使用动态功能连接来预测感兴趣的临床结果; (c) 发展
联合估计对应于不同子组的多重回归模型的新方法,同时
纳入表征协变量的网络信息,以及 (d) 开发 3- 的贝叶斯方法
使用解剖学先验知识对大脑中的纤维束进行维度形状估计,然后
使用估计的纤维束的形状来预测感兴趣的临床结果。我们还开发了一个
用于验证所提出的方法的稳健策略,我们还提供了开发软件的大纲
并与研究人员和感兴趣的各方公开分享。该应用程序解决了几个临床
由于缺乏神经影像学研究的状态,以前从未探讨过这些重大问题
艺术统计方法论,预计将在方法论、科学、临床和
翻译贡献。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suprateek kundu其他文献
Suprateek kundu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suprateek kundu', 18)}}的其他基金
Integrative Brain Network-Based Analysis for Heterogeneous and Multimodal
基于综合脑网络的异构和多模态分析
- 批准号:
10457493 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
Integrative Brain Network-Based Analysis for Heterogeneous and Multimodal
基于综合脑网络的异构和多模态分析
- 批准号:
10442961 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
Integrative Brain Network-Based Analysis for Heterogeneous and Multimodal
基于综合脑网络的异构和多模态分析
- 批准号:
10672253 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别: