Understanding the molecular basis of transmembrane protein association
了解跨膜蛋白关联的分子基础
基本信息
- 批准号:10001573
- 负责人:
- 金额:$ 35.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureAreaBacteriaBinding SitesBiologicalBiological ProcessBiophysicsCell divisionCell physiologyComplexComputer ModelsComputing MethodologiesDataDefectDevelopmentDimerizationDiseaseExperimental DesignsGYPA geneGoalsGrowthHumanHydrogen BondingIntegral Membrane ProteinKnowledgeLaboratory StudyLigand BindingMembrane ProteinsMethodologyMethodsMolecularMolecular ConformationPatternPhysiologicalPlayProtein EngineeringProteinsProteomeResearchRoleStructureStructure-Activity RelationshipSystemTestingbiological systemsdesigndimerhuman diseasemembrane assemblyorganizational structureprotein complexsynthetic biologytheories
项目摘要
PROJECT SUMMARY/ABSTRACT
Our research focuses on understanding oligomeric complexes of single-pass membrane proteins. The
single-pass proteins are the largest class, comprising over 20% of all membrane proteins. They are of extreme
biological importance: the human proteome alone contains over 2,000 single-pass membrane proteins which
are central to a myriad of physiological functions. The transmembrane helices of these single-pass membrane
proteins often play a critical role through oligomerization and conformational change. Understanding the
structural and biophysical basis these phenomena is critical to understanding function in biological processes,
and the mechanisms of many diseases.
My laboratory studies oligomerization of single-pass membrane proteins with two complementary projects
– one related to elucidating structure-function relationship in an important biological system, the second aiming
to understand the general principles of transmembrane helix association. Because these membrane protein
systems are difficult to study with the traditional structural methods, we apply a methodology that integrates
experimental methods with advanced computational modeling. The computational modeling mitigates the lack
of experimental structure, providing structural interpretation of the available experimental data and guidance for
experimental designs.
The goal of our first project is to investigate the structural organization of membrane proteins of the
divisome, the large multi-protein that governs cell division in bacteria. Although progress has been achieved in
understanding its components and their roles, the structural architecture of the divisome and its precise
mechanisms are still poorly understood. Unraveling this organization is crucial for understanding the
mechanisms that govern bacterial division. This knowledge could also support the development of new
strategies for controlling bacterial growth.
Our second project seeks to understand transmembrane helix oligomerization using protein design. The
subject is one of the most common transmembrane dimerization motifs, the GASright motif. GASright – which is
best known as the fold of the glycophorin A dimer – is characterized by the presence of small amino at its
interface, arranged to form GxxxG and similar patterns. The helices are in close contact, promoting the
formation of networks of weak Cα–H∙∙∙O=C hydrogen bonds. We are able to predict computationally the
structure of GASright dimers and their relative stability. Our next goal is to test our theories by modulating
dimerization and conformational switching in these dimers through the design of ligand binding sites. This is
an almost unexplored area of membrane protein engineering that is extremely relevant for natural systems and
could potentially have applications in synthetic biology.
项目摘要/摘要
我们的研究重点是理解单通膜蛋白的寡聚复合物
单通蛋白是最大的类,成分超过所有膜蛋白。
生物学重要性:仅人类蛋白质组包含超过2000个单通膜蛋白
是无数生理功能的核心。
蛋白质通常通过寡聚和预约变化发挥关键作用。
结构和生物物理基础这些现象对于理解生物过程中的功能至关重要,
以及许多疾病的机制。
我的实验室研究通过两个互补项目将单通膜蛋白的低聚
- 与重要的生物系统中阐明结构 - 功能有关的一个,第二个目标
了解跨膜螺旋结合的一般原理。
系统是用传统结构方法研究的,我们应用了一种集成的方法
具有高级计算建模的实验方法。
实验结构,提供可用的体验数据的结构解释和指导
实验设计。
我们的项目的目的是调查膜蛋白的结构组织
Divisome,是政治Bactteria细胞分裂的大型多蛋白。
了解其组成部分及其角色,分裂的结构结构及其精确
机制仍然是理解的。
统治巴基的机制。
控制细菌生长的策略。
我们的第二个项目试图使用蛋白质设计来了解跨膜螺旋的寡聚化
受试者是最常见的跨膜二聚体基序之一,即气体基序。
最著名的是糖果蛋白a二聚体的折叠 - 特征是存在小氨基
界面,安排形成GXXXG和类似的模式。
弱cαH的网络的形成,我们要在计算上预测氢键。
气体二聚体的结构和相对稳定性。
这些二聚体中的二聚化和同意切换坐落在配体结合的设计。
膜蛋白工程几乎未开发的区域,与自然系统和
有可能在合成生物学中应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Senes其他文献
Alessandro Senes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Senes', 18)}}的其他基金
Understanding the molecular basis of transmembrane protein association
了解跨膜蛋白关联的分子基础
- 批准号:
10473779 - 财政年份:2019
- 资助金额:
$ 35.63万 - 项目类别:
Understanding the molecular basis of transmembrane protein association
了解跨膜蛋白关联的分子基础
- 批准号:
10265451 - 财政年份:2019
- 资助金额:
$ 35.63万 - 项目类别:
Structural study of transmembrane interactions in the bacterial divisome
细菌分裂体跨膜相互作用的结构研究
- 批准号:
9188131 - 财政年份:2013
- 资助金额:
$ 35.63万 - 项目类别:
Structural study of transmembrane interactions in the bacterial divisome
细菌分裂体跨膜相互作用的结构研究
- 批准号:
9050070 - 财政年份:2013
- 资助金额:
$ 35.63万 - 项目类别:
Structural study of transmembrane interactions in the bacterial divisome
细菌分裂体跨膜相互作用的结构研究
- 批准号:
8724521 - 财政年份:2013
- 资助金额:
$ 35.63万 - 项目类别:
Structural study of transmembrane interactions in the bacterial divisome
细菌分裂体跨膜相互作用的结构研究
- 批准号:
8578717 - 财政年份:2013
- 资助金额:
$ 35.63万 - 项目类别:
Structural study of transmembrane interactions in the bacterial divisome
细菌分裂体跨膜相互作用的结构研究
- 批准号:
9333398 - 财政年份:2013
- 资助金额:
$ 35.63万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 35.63万 - 项目类别:
Multifunctional Colloidal Gel for Dentin Formation
用于牙本质形成的多功能胶体凝胶
- 批准号:
10452975 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Molecular mechanisms of nucleic acid recognition and maintenance in meiosis and innate immunity
减数分裂和先天免疫中核酸识别和维持的分子机制
- 批准号:
10542438 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Acoustic platform for separation, isolation, and enrichment in biomedical research
用于生物医学研究中分离、隔离和富集的声学平台
- 批准号:
10445614 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别:
Molecular mechanisms of nucleic acid recognition and maintenance in meiosis and innate immunity
减数分裂和先天免疫中核酸识别和维持的分子机制
- 批准号:
10795245 - 财政年份:2022
- 资助金额:
$ 35.63万 - 项目类别: