Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types
针对 ASCT2 的基于杂交结构和配体的药物发现方法,ASCT2 是一种氨基酸转运蛋白,对于多种癌症类型的细胞增殖上调至关重要
基本信息
- 批准号:10003012
- 负责人:
- 金额:$ 3.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlanineAlgorithmsAmino Acid TransporterAmino AcidsBindingBiologicalBiologyCell ProliferationCellsChemicalsChemistryCodeCommunitiesComplexComputational TechniqueComputer AssistedComputer softwareComputing MethodologiesCryoelectron MicroscopyCysteineDataDevelopmentDockingDrug DesignEducationEligibility DeterminationFacility AccessesFormulationGlutamineHomologous ProteinHybridsIndividualInstitutionLaboratoriesLibrariesLigandsLiteratureMachine LearningMalignant NeoplasmsMetabolicMethodologyMethodsModelingMutationPaperPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePlayProliferatingProteinsProtocols documentationPublicationsPythonsQuantitative Structure-Activity RelationshipResearchResearch PersonnelResourcesRoleSamplingSchoolsSerineStructureTechniquesTestingTherapeuticTimeTwo-Hybrid System TechniquesUniversitiesValidationanti-cancer therapeuticartificial neural networkbasecancer typecheminformaticscomputational chemistrycomputing resourcescost efficientdesigndrug candidatedrug discoveryexperiencehigh throughput screeningimprovedin silicoinhibitor/antagonistinsightinterestmembermetabolic ratemethod developmentmultitaskneoplastic cellnovelpredictive modelingprotein structureprotein structure predictionscaffoldscreeningsimulationsmall moleculestructural biologytherapeutic developmenttooltumortumor metabolism
项目摘要
Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid
transporter critical for upregulated cell proliferation in numerous cancer types
This proposal outlines the protocols and techniques I will be using to optimize drug discovery
of ASCT2, a promising target for anti-cancer therapeutics. ASCT2 plays a key role in increasing the
glutamine influx for tumor cells to maintain such high metabolic rates required for rapid proliferation.
The first structures of ASCT2 were recently determined experimentally, making this a newly viable
target for structure-based studies ASCT2 was only recently discovered to play a critical role in cancer
cell metabolism and little medicinal chemistry efforts have been focused on ASCT2 antagonist
development allowing immense potential for breaking into new compound scaffolds for further testing.
Currently, there have not been any ASCT2 drug campaigns that incorporate computational drug
discovery methods and this proposal outlines the first studies dedicated to this.
Many institutions and pharmaceutical companies have implemented computational strategies
into drug discovery pipelines as a means to produce viable drug candidates in a more cost-efficient
and timely manner. Depending on the target of interest, researchers focus more intently on either
ligand-based (LB) or structure-based (SB) methods, but rarely are these two methods hybridized in a
sophisticated fashion. By utilizing strategies of both LB- and SB- computational drug discovery, I
intend to merge the advantages of both methodologies as a means to sample and filter large
chemical space more efficiently. Our lab has active development in two computational chemistry
software suites: Rosetta primarily focuses on SB methods whereas the Biology and Chemistry Library
(BCL) contains advanced cheminformatics toolsets for LB methods. The focus of my project will be to
integrate the RosettaDrugDesign code to allow a more extensive, yet efficient sampling of chemical
space using ligand-based techniques. We intend to incorporate these more advanced LB techniques
available in the BCL, including multi-tasking artificial neural networks for Quantitative Structure-
Activity Relationship predictions, to filter compounds during docking simulations within the
RosettaDrugDesign. By bringing together the structure prediction abilities of Rosetta and small-
molecule tools of BCL, we anticipate exceptional advances in our abilities to efficiently design drugs
for ASCT2.
基于氨基酸的杂交结构和配体的药物发现方法ASCT2(ASCT2)
转运蛋白对于多种癌症类型的上调细胞增殖至关重要
该建议概述了我将使用的协议和技术来优化药物发现
ASCT2,一个有希望的抗癌治疗靶标。 ASCT2在增加
肿瘤细胞的谷氨酰胺涌入以维持快速增殖所需的高代谢率。
最近通过实验确定了ASCT2的第一个结构,使其成为新的可行性
基于结构的研究ASCT2的目标直到最近才发现在癌症中起关键作用
细胞代谢和几乎没有药物化学工作的重点是ASCT2拮抗剂
开发允许闯入新的复合支架进行进一步测试。
目前,尚无任何ASCT2毒品活动来纳入计算药物
发现方法和该提案概述了专门针对此的第一批研究。
许多机构和制药公司已经实施了计算策略
进入药物发现管道,作为一种以更具成本效益生产可行的毒品的手段
和及时的方式。根据感兴趣的目标,研究人员更专注于任何一个
基于配体(LB)或基于结构(SB)的方法,但很少在A中杂交这两种方法
精致的时尚。通过利用LB-和SB-计算药物发现的策略,I
打算合并两种方法的优点,以作为样品和过滤大的方法
化学空间更有效。我们的实验室在两种计算化学中都有积极的发展
软件套件:Rosetta主要关注SB方法,而生物学和化学库
(BCL)包含用于LB方法的高级化学信息学工具集。我项目的重点将是
整合Rosettadrugdesign代码,以允许对化学物质进行更广泛而有效的采样
使用基于配体的技术空间。我们打算结合这些更先进的LB技术
在BCL中可用,包括用于定量结构的多任务人工神经网络 -
活动关系预测,以在对接模拟过程中过滤化合物
Rosettadrugdesign。通过将Rosetta和小型的结构预测能力汇总在一起
BCL的分子工具,我们预计我们有效设计药物的能力会取得出色的进步
对于ASCT2。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon Talli Smith其他文献
Shannon Talli Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shannon Talli Smith', 18)}}的其他基金
Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types
针对 ASCT2 的基于杂交结构和配体的药物发现方法,ASCT2 是一种氨基酸转运蛋白,对于多种癌症类型的细胞增殖上调至关重要
- 批准号:
10333203 - 财政年份:2020
- 资助金额:
$ 3.82万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging systems pharmacology to advance precision medicine for Gabapentin treatment of AUD
利用系统药理学推进加巴喷丁治疗 AUD 的精准医学
- 批准号:
10629306 - 财政年份:2022
- 资助金额:
$ 3.82万 - 项目类别:
Hybridized structure- and ligand- based drug discovery approaches targeting ASCT2, an amino acid transporter critical for upregulated cell proliferation in numerous cancer types
针对 ASCT2 的基于杂交结构和配体的药物发现方法,ASCT2 是一种氨基酸转运蛋白,对于多种癌症类型的细胞增殖上调至关重要
- 批准号:
10333203 - 财政年份:2020
- 资助金额:
$ 3.82万 - 项目类别: