CMA: Network plasticity in acquired epileptogenesis

CMA:获得性癫痫发生中的网络可塑性

基本信息

项目摘要

Project Summary/ Abstract: Temporal Lobe Epilepsy (TLE) is the most frequent type of post-­traumatic  epilepsy, causing significant morbidity in the veteran population. Approximately 60% of adult epilepsy cases  are due to TLE, which is often medication-­resistant requiring surgery. Even after surgery, ~30% of patients  continue to have ictal events. TLE causes cognitive deficits, including significant executive, memory, and  neuropsychiatric dysfunction. After initiation by a precipitating event, a seizure-­free “epileptogenic” period  typically follows before TLE sets in. The network mechanisms that lead to the development of epilepsy during  this “epileptogenic” period are poorly understood. A deep and precise understanding of these mechanisms is  critical for developing new, more effective, methods of intervention to treat temporal epilepsy without the side-­ effects of medications and the potential disability of large surgical resections.   TLE seizures are thought to be initiated at a restricted temporal focus and then entrain cortical networks. Recent  evidence suggests that a large network of areas, including neocortex, play an active role in TLE. Sheybani et al.  [7] reports that a self-­sustained epileptic network developed during epileptogenesis, becoming gradually able to  generate  pathological  electrical  activity  independent  of  the  initial  hippocampal  focus.  Together  with  other  experimental and clinical observations, this strongly suggests that extra-­hippocampal cortical areas are involved  in epileptogenesis. However, how cortical circuits get modified during epileptogenesis remains unknown.  We  combine  chronic,  in-­vivo,  large-­field  (Mesoscopic)  two-­photon  microscopy  with  optogenetic  modulation  of  specific  cortical  interneuron  classes  to  study  at  single-­cell  resolution:  i)  how  aberrant  activity  emerges  in  neocortical  circuits  over  the  course  of  epileptogenesis  in  the  pilocarpine  model  of  TLE,  and  ii)  whether  it  is  possible  to  interrupt  the  hippocampo-­cortical  cycle  of  epileptic  activity  by  modulating  optogenetically  specific  types  of  cortical  interneurons. We  hypothesize  that  hypersynchronous  firing  of parvalbumin  positive (PV+) and  progressively decreased engagement of SST+ interneurons emerges in cortical circuits during the epileptogenic  period.  Pathological  circuit  dynamics  will  be  particularly  observed  during  the  200-­400  Hz  high  frequency  oscillations (HFOs) shown to be a marker for circuit hyper-­excitability.  In aim 1, we measure how the profile of recruitment of different types of cortical neurons during high frequency  oscillations  (HFOs)  changes  as  a  function  of  time  during  epileptogenesis  in  the  pilocarpine  model  of  TLE.  We  expect that over time cortical excitability will increase and autonomous hyper-­synchronous activity patterns that  may be hippocampally independent will emerge.  In aim 2, we will use single-­photon optogenetics with stabilized  step-­function  opsins  as  well  as  spatial-­light-­modulated  (SLM),  2-­photon,  single-­cell-­specific  optogenetics  to  causally  interrogate  cortical  circuit  excitability  during  epileptogenesis.  Information  obtained  will  be  critical  for  identifying cell specific targets for interventions to prevent epileptogenesis and its cognitive sequelae in TLE.  Overall  Strategy:  The  overall  goal  of  our  collaborative  merit  proposal  is  to  determine  the  key  changes  in  hippocampal and neocortical circuitry that promotes the development of epilepsy and cognitive dysfunction after  the  initial  insult.  Aims  of  Other  Proposals:  1.  Wasterlain  will  use  immunocytochemical  techniques,  including  EM immunocytochemistry, to quantify changes in the GABA receptor expression at the synapse and in the peri-­ synaptic  space.  2.  Naylor  will  use  in-­vitro  slice  patch  clamp  recordings,  optogenetics,  and  computational  modeling  to  understand  how  the  functional  connectivity  of  different  interneuron  types  changes  during  this  key  period. 3. Golshani will use a combination of electrophysiological and imaging techniques to understand how the  activity patterns of defined interneuron types studied by Naylor change in vivo during the epileptogenesis in the  hippocampus. All studies are independent, yet deeply inform each other, as a multi-­dimensional understanding  will be key for making progress in this highly complex and disabling disorder.
项目摘要/摘要:颞叶癫痫(TLE)是创伤后最常见的类型 癫痫病,导致退伍军人人口严重。 是由于TLE,这通常是需要手术的耐药性。 继续发生ICTAL事件。 神经精神病障碍。 通常在设置之前遵循。导致癫痫发育的网络机制 李的可怜的时期是这个“癫痫发生”时期。 对于开发新的,更有效的国际方法的至关重要的治疗时间癫痫的方法 医学性的影响以及大型外科手术分辨率的潜在悬而未决的影响。 癫痫发作被认为是在暂时的临时焦点上启动的。 有证据表明,塔格(Tharge)网络(包括新皮层)在Sheybani等人中发挥了积极作用。 [7]报告说,在癫痫发生过程中开发的自养癫痫网络,逐渐能够逐渐发展。 独立于初始海马焦点而产生病理电活动。 实验和临床观察,这强烈表明涉及海马外皮质区域 然而,在癫痫发生中,在癫痫症中如何修饰皮质回路仍然未知。 我们将慢性,体内的大田(介观)两光子显微镜与光遗传学调制结合 特定的皮质间神经元类以单细胞分辨率进行研究:i) 在TLE和II的毛果石模型中,新皮层的癫痫发生过程 通过调节光遗传学特异性 皮质中间神经元的类型。 SST+中间神经元的渐进性脱落的互动在癫痫发作期间出现在皮质电路中 在200-400 Hz的高频期间将特别观察到病理电路动力学 振荡(HFOS)证明是电路高兴奋性的标记。 在AIM 1中,我们测量了高频中不同皮质神经元募集的概况 振荡(HFOS)随着时间的癫痫生成时的时间而变化。 期望随着时间的流逝,皮质性兴奋性会增加,并且自动性超同步活动模式 可以在AIM 2中出现海马独立 阶跃功能的Opsin以及空间 - 轻型模块化(SLM),2光子,单细胞特异性光遗传学 在癫痫发生过程中,因果质疑的皮质回路兴奋性。 鉴定细胞特异性靶标的国际性,以降低了癫痫发作及其在TLE中的认知后遗症。 总体策略:我们实验室优点提议的总体目标是确定关键变化 海马和新皮层电路,促进癫痫发育和认知功能障碍后 最初的侮辱。 EM免疫细胞化学,以量化突触中GABA受体表达的变化以及 突触空间。 建模以了解此键合期间不同中间神经元类型的功能连接如何变化 时期3。高尔沙尼将使用电生理和成像技术的组合来了解 Naylor在癫痫发生中研究了定义的中间神经元类型的活性模式 海马。 将是在这种高度复杂和残疾疾病中取得进展的关键。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stelios Manolis Smirnakis其他文献

Stelios Manolis Smirnakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stelios Manolis Smirnakis', 18)}}的其他基金

Cell-specific Functional and Transcriptomic Analysis of Plasticity Pathways in MECP2-Duplication Syndrome
MECP2 重复综合征可塑性途径的细胞特异性功能和转录组分析
  • 批准号:
    10593623
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CMA: Network plasticity in acquired epileptogenesis
CMA:获得性癫痫发生中的网络可塑性
  • 批准号:
    10343662
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Dense Analysis of Cortical Circuit Dysfunction in the MECP2-duplication Syndrome of Autism
自闭症 MECP2 重复综合征皮质回路功能障碍的密集分析
  • 批准号:
    10545061
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Dense Analysis of Cortical Circuit Dysfunction in the MECP2-duplication Syndrome of Autism
自闭症 MECP2 重复综合征皮质回路功能障碍的密集分析
  • 批准号:
    10322152
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
CMA: Network plasticity in acquired epileptogenesis
CMA:获得性癫痫发生中的网络可塑性
  • 批准号:
    10553141
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
PROBING THE CELL-SPECIFIC CONTROL OF FOCAL CORTICAL SEIZURE EVENTS IN VIVO
探究体内局灶性皮质癫痫事件的细胞特异性控制
  • 批准号:
    10553167
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Developing a rational strategy for visual rehabilitation after cortical lesions
制定皮质损伤后视力康复的合理策略
  • 批准号:
    10091313
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
PROBING THE CELL-SPECIFIC CONTROL OF FOCAL CORTICAL SEIZURE EVENTS IN VIVO
探究体内局灶性皮质癫痫事件的细胞特异性控制
  • 批准号:
    10438529
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
PROBING THE CELL-SPECIFIC CONTROL OF FOCAL CORTICAL SEIZURE EVENTS IN VIVO
探究体内局灶性皮质癫痫事件的细胞特异性控制
  • 批准号:
    9889763
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Developing a rational strategy for visual rehabilitation after cortical lesions
制定皮质损伤后视力康复的合理策略
  • 批准号:
    10454752
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

钙黏蛋白胞内区域去磷酸化介导棉铃虫Cry1Ac抗性机制
  • 批准号:
    32372543
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
星形胶质细胞微区域钙活动对缺血性卒中后神经血管耦合的调节作用及药物靶标研究
  • 批准号:
    82230115
  • 批准年份:
    2022
  • 资助金额:
    261 万元
  • 项目类别:
    重点项目
苁蓉舒痉颗粒调节MAMs区域钙稳态保护多巴胺神经元的分子机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
谱方法在细胞内钙动力学数学模型中的应用
  • 批准号:
    11571225
  • 批准年份:
    2015
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
草酸钙肾结石核心区域基质蛋白质丰度变化与结石发生的相关性研究
  • 批准号:
    81360112
  • 批准年份:
    2013
  • 资助金额:
    49.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mitochondrial Calcium and Neuronal Health
线粒体钙和神经元健康
  • 批准号:
    10638869
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
  • 批准号:
    10734258
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Impact of Early Life Stress On Amygdala Circuitry And Chronic Excessive Aggression
早期生活压力对杏仁核回路和慢性过度攻击性的影响
  • 批准号:
    10729031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
  • 批准号:
    10807864
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
  • 批准号:
    10739548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了