A mechanism of lysosomal Calcium entry
溶酶体钙进入机制
基本信息
- 批准号:10020204
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAffectAffinityAlanineAmino AcidsAnimalsBioinformaticsBiologicalBiological AssayBrainCa(2+)-Transporting ATPaseCalciumCell physiologyCellsCytosolDNADataDefectDiseaseDyesEndoplasmic ReticulumFamily memberFunctional disorderHomology ModelingHumanImageIn SituIonsKineticsKnowledgeLaboratoriesLeadLocationLysosomesMammalian CellMapsMeasuresMediatingMethodsModelingMolecularMonitorMutationNerve DegenerationNeurodegenerative DisordersNeuronal Ceroid-LipofuscinosisOrganellesParkinson DiseaseParkinsonian DisordersPathogenicityPhotobleachingPositioning AttributeProtein ImportReporterResearchRisk FactorsSpastic ParaplegiaSpecificityStructural ModelsStructureStructure-Activity RelationshipTechnologyTherapeuticTimeVariantanalogbasecell typeinsightmembermutantnervous system disordernovelpredictive modelingprototypereal-time imagesrisk variantsmall moleculestemsuccesstheoriestherapeutic target
项目摘要
Lysosomes are highly acidic organelles that integrate important cellular processes in all cell types.
There is a preponderance of risk genes for neurological disorders associated with lysosome dysfunction.
In the lysosome, lumenal Ca2+ is critical to function, and defects in every known lysosomal Ca2+ release
channel leads to a distinct neurological disorder. Yet, dysregulated lysosomal Ca2+ can also arise due to
defective import. While much more known of mechanisms that release lysosomal Ca2+, there is a paucity
of information on the pathophysiology of Ca2+ import. Notably, the only known lysosomal Ca2+ importer in
animals, the P-type ATPase ATP13A2, was recently discovered by my laboratory using newly developed
reporter technology for lysosomal Ca2+ imaging. This importer was previously identified as a major risk
gene for Parkinson's disease. Thus, a structural level understanding of how by ATP13A2 imports Ca2+ into
the lysosome is highly significant.
The premise of this proposal is that ATP13A2 function is mechanistically similar to that of SERCA but
with lower affinity and/or efficiency of Ca2+ transport. This premise is based on unpublished data from my
laboratory using homology modeling, which predicts very high similarity between ATP13A2 and SERCA.
SERCA (Sarco/Endoplasmic Reticulum Ca2+ ATPase) is one of the best studied P2-type ATPases. In
contrast, ATP13A2 is a P5-type ATPase, an ATPase sub-class yet to be mechanistically characterized.
The steps outlined in this proposal will identify and study the molecular mechanism of how ATP13A2
drives lysosomal Ca2+ import by mapping lysosomal Ca2+ dynamics in real-time in live mammalian cells.
We plan to create and characterize a photostable lysosomal Ca2+ reporter and develop an assay to map
the kinetics of lysosomal Ca2+ import in situ in live cells. Preliminary data shows that we have identified the
relevant molecular components to make this photostable organellar Ca2+ reporter. Further, an initial
bioinformatics analysis and homology modeling has revealed a remarkable similarly between ATP13A2
and SERCA. This will allow us to pinpoint residues important to Ca2+ import by a P5-type ATPase. By
expressing various ATP13A2 mutants and using real-time Ca2+ mapping, we shall be able to identify
residues critical to the function of ATP13A2.
Successful completion of this research will identify how a major risk gene for Parkinson's disease
imports lysosomal Ca2+ and elucidate the first structure-activity relationship in P5-type ATPases. Also, by
providing the first practical technology to quantitatively map lysosomal Ca2+ fluxes in live cells (in real-time),
we will be in a position to study new lysosomal Ca2+ importers and existing lysosome Ca2+ release channels
connected to various neurodegenerative diseases.
溶酶体是高度酸性的细胞器,整合所有细胞类型中的重要细胞过程。
存在大量与溶酶体功能障碍相关的神经系统疾病的危险基因。
在溶酶体中,腔内 Ca2+ 对于功能至关重要,并且每种已知的溶酶体 Ca2+ 释放都存在缺陷
通道会导致明显的神经系统疾病。然而,溶酶体 Ca2+ 失调也可能是由于
进口有缺陷。虽然释放溶酶体 Ca2+ 的机制更为人所知,但仍缺乏
关于 Ca2+ 输入的病理生理学信息。值得注意的是,唯一已知的溶酶体 Ca2+ 输入者
动物,P 型 ATP 酶 ATP13A2,是我的实验室最近使用新开发的方法发现的
溶酶体 Ca2+ 成像报告技术。该进口商此前被认定为重大风险
帕金森病的基因。因此,从结构层面了解 ATP13A2 如何将 Ca2+ 导入
溶酶体非常重要。
该提议的前提是 ATP13A2 功能在机制上与 SERCA 相似,但
Ca2+ 运输的亲和力和/或效率较低。这个前提是基于我未发表的数据
实验室使用同源模型,预测 ATP13A2 和 SERCA 之间具有非常高的相似性。
SERCA(肌肉/内质网 Ca2+ ATP 酶)是研究最充分的 P2 型 ATP 酶之一。在
相比之下,ATP13A2 是一种 P5 型 ATP 酶,是一种尚未进行机械表征的 ATP 酶亚类。
本提案中概述的步骤将确定和研究 ATP13A2 如何进行的分子机制
通过在活哺乳动物细胞中实时绘制溶酶体 Ca2+ 动态来驱动溶酶体 Ca2+ 输入。
我们计划创建并表征光稳定的溶酶体 Ca2+ 报告基因,并开发一种分析方法来绘制图谱
活细胞中溶酶体 Ca2+ 原位输入的动力学。初步数据显示,我们已经确定
制作这种光稳定性细胞器 Ca2+ 报告基因的相关分子成分。此外,初始
生物信息学分析和同源建模揭示了 ATP13A2 之间的显着相似性
和SERCA。这将使我们能够查明对 P5 型 ATP 酶输入 Ca2+ 重要的残基。经过
表达各种 ATP13A2 突变体并使用实时 Ca2+ 绘图,我们将能够识别
对 ATP13A2 功能至关重要的残基。
这项研究的成功完成将确定帕金森病的主要风险基因如何
输入溶酶体 Ca2+ 并阐明 P5 型 ATP 酶中的第一个结构-活性关系。另外,通过
提供第一个定量绘制活细胞中溶酶体 Ca2+ 通量的实用技术(实时),
我们将能够研究新的溶酶体 Ca2+ 输入器和现有的溶酶体 Ca2+ 释放通道
与各种神经退行性疾病有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yamuna Krishnan其他文献
Yamuna Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yamuna Krishnan', 18)}}的其他基金
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10684328 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10641675 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10501188 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
- 批准号:
10524297 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Intracellular Electrophysiology: An electrochemical atlas of organelles
细胞内电生理学:细胞器电化学图谱
- 批准号:
10693891 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Mechanisms that alter Potassium channel trafficking in arrhythmias
改变心律失常中钾通道运输的机制
- 批准号:
10676958 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Mechanism and function of intracellular sodium-proton exchangers
细胞内钠质子交换器的机制和功能
- 批准号:
10797218 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Predoctoral Training Program in Chemistry and Biology
化学与生物学博士前培训项目
- 批准号:
10334217 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10684693 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Leveraging protein dynamics to drug filovirus protein-nucleic acid interactions using simulations and experiments
通过模拟和实验利用蛋白质动力学来药物丝状病毒蛋白质-核酸相互作用
- 批准号:
10680759 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Roles for chromatin remodeler RSC and histone acetyltransferases in regulating chromatin structure and transcription
染色质重塑剂 RSC 和组蛋白乙酰转移酶在调节染色质结构和转录中的作用
- 批准号:
10579529 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10536876 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别: