IMPROVING RIGID HEAD MOTION CORRECTION USING PARALLEL IMAGING
使用并行成像改进刚性头运动校正
基本信息
- 批准号:7601890
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingBackChildhoodComputer Retrieval of Information on Scientific Projects DatabaseConditionDataDetectionElderlyErythrocyte GhostFoundationsFundingGrantHeadImageIndividualInstitutionMagnetic Resonance ImagingMapsMedicalMethodsMorphologic artifactsMotionPatientsPhasePopulationPositioning AttributeRangeRelative (related person)ResearchResearch PersonnelResolutionResourcesRotationSamplingScanningSchemeSeizuresSimulateSliceSourceStrokeTechnologyThickTranslationsTremorUnited States National Institutes of HealthValidationVariantWorkbasedata spacedensitydesirehealthy volunteerimage reconstructionimprovedin vivoreconstructionresearch studyvolunteer
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Introduction. Involuntary patient motion is still a great challenge in MRI. Specifically, in the elderly and pediatric patient population or in patients whose medical conditions (tremor, seizure, stroke) preclude them to hold still, effective strategies to compensate for motion are paramount. In this study, a variant of parallel imaging is introduced that can correct k-space inconsistencies arising from rigid body motion (rotation or translation). This motion correction scheme first identifies the degree of motion, corrects the k-space data accordingly and thereafter employs an augmented conjugate gradient based iterative image reconstruction to synthesize missing data in k-space. The method is described and verified in simulated interleaved EPI and spiral images scans as well as in vivo using bi-density spiral scanning.
Materials and Methods: Reconstruction Generally, an object rotation in image space is paralleled by a similar rotation of k-space data, whereas translations are reflected by linear phase rolls. If these motion components are known, k-space data can be corrected for but usually leading to a fragmentation of k-space. This, in turn, gives rise to significant ghost artifacts in the final image. Our correction builds upon an augmented version of an iterative SENSE reconstruction1 and is performed as follows: 1) counter-rotating k-space data by applying the corresponding rotation matrix to the k-space trajectory coordinate points of each profile/interleave prior to gridding. 2) Rotating the coil sensitivity map that enters the encoding matrix E1 for each profile/interleave. This rotation is necessary because even if the object is rotated back to its desired position, different regions of the object have been exposed to different coil sensitivities during the acquisition. 3) Correcting the altered sampling density after rotation. In this study, Voronoi tessellation has been used to derive the new sampling density from the rotated k-space trajectories. 4) Phasing the data to account for translation by applying the correction term pcorr(?) = exp{-j(2??x/FOVx) (kx(?)/[kx,max-kx,min]) j(2??y/FOVy)(ky(?)/[ky,max-ky,min])} to the original k-space data prior to gridding.
Motion detection Various methods exist to derive the extent of translational and rotational motion from MR data. In this study, the motion information was extracted from navigator echoes. The navigator information can be derived from the scan trajectory itself (i.e. self-navigating trajectories) or alternatively from a separate acquisition that provides a low resolution image. Here, a multi-grid registration approach was used that finds the maximum Pearson correlation between a reference image and individual navigator images and provided a reliable estimate of the amount of rotation and translation relative to the reference image (average over all images). To increase robustness and to improve the accuracy of co-registration this step was repeated at least twice.
Experiments Synthetic data for interleaved spiral and EPI acquisitions (8 interleaves) were generated by using inverse gridding operations2 on a motion corrupted phantom. For each of the eight interleaves a random head rotation (range ¿30¿) and translation (range ¿15mm) was generated. Prior to the inverse gridding step, each of the individually rotated and shifted images were multiplied by coil sensitivities simulating receiver coil sensitivities from six coils that were attached around the circumference of the object. In vivo validation was performed in 3 healthy volunteers using T2w spin echo scans with an interleaved spiral-in/spiral-out readout and an 8-channel head coil. The spiral-in part (3-5ms duration) provided for each interleaf data a low resolution navigator image (322). The spiral-out part was a normal interleaved spiral acquisition: TR/TE=4,000ms/85ms, slice thickness/ gap=4/1mm, 17 slices, FOV=24cm, matrix=256, interleaves = 32, and NEX=1. The receiver bandwidth for the spiral acquisition was +/- 125kHz. During each experiment the volunteers were asked to rotate and/or shift their heads at three increasing levels of motion (no, mild [~¿15¿], and moderate [~¿25¿] motion ).
References: 1Pruessmann K, et al. MRM 46: 638-51, 2001; 2Rasche V, et al. IEEE TMI 18: 385-92, 1999.
Acknowledgements: This work was supported in part by the NIH (1R01EB002771), the Center of Advanced MR Technology at Stanford (P41RR09784), Lucas Foundation.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以出现在其他 CRISP 条目中 列出的机构是。
对于中心来说,它不一定是研究者的机构。
简介:患者的无意识运动仍然是 MRI 中的一个巨大挑战,特别是对于老年人和儿童患者,或者由于身体状况(震颤、癫痫、中风)而无法保持静止的患者,有效的运动补偿策略至关重要。在这项研究中,引入了一种并行成像的变体,它可以校正由刚体运动(旋转或平移)引起的 k 空间不一致。该运动校正方案首先识别运动程度,相应地校正 k 空间数据,然后使用。一个增强的基于共轭梯度的迭代图像重建来合成 k 空间中的缺失数据 该方法在模拟交错 EPI 和螺旋图像扫描以及使用双密度螺旋扫描的体内进行了描述和验证。
材料和方法:重建通常,图像空间中的对象旋转与 k 空间数据的类似旋转并行,而平移由线性相位滚动反映,如果这些运动分量已知,则可以校正 k 空间数据。通常会导致 k 空间碎片。我们的校正基于迭代 SENSE 重建的增强版本,执行方式如下:1)通过在网格化之前将相应的旋转矩阵应用于每个轮廓/交错的k空间轨迹坐标点来反向旋转k空间数据2)旋转进入每个轮廓/交错的编码矩阵E1的线圈灵敏度图。旋转是必要的,因为即使将物体旋转回其所需位置,在采集过程中物体的不同区域也会暴露于不同的线圈灵敏度。 3) 校正密度旋转后改变的采样。 Voronoi 曲面细分已用于从旋转的 k 空间轨迹导出新的采样密度 4) 通过应用校正项 pcorr(?) = exp{-j(2??x/FOVx) 对数据进行定相以考虑平移。 (kx(?)/[kx,max-kx,min]) j(2??y/FOVy)(ky(?)/[ky,max-ky,min])} 到原始值网格化之前的 k 空间数据。
运动检测 有多种方法可以从 MR 数据中获取平移和旋转运动的程度。在本研究中,运动信息是从导航器回波中提取的。导航器信息可以从扫描轨迹本身(即自导航轨迹)或中获取。或者从提供低分辨率图像的单独采集中,使用多网格配准方法来找到参考图像和各个导航器图像之间的最大皮尔逊相关性,并提供旋转量的可靠估计。和相对于参考图像的平移(所有图像的平均值)为了提高鲁棒性并提高共同配准的准确性,该步骤至少重复两次。
实验 通过在运动损坏的模型上使用逆网格操作2,生成交错螺旋和 EPI 采集(8 个交错)的合成数据。对于 8 个交错中的每一个,随机头部旋转(范围 ¿30¿)和平移(范围 ¿15mm)。在生成逆网格步骤之前,将每个单独旋转和移动的图像乘以模拟接收器线圈灵敏度的线圈灵敏度。使用带有交错螺旋入/螺旋出读数和 8 通道头部线圈的 T2w 旋转回波扫描,在 3 名健康志愿者中进行体内验证。 (3-5ms 持续时间)为每个交错数据提供低分辨率导航器图像(322)。螺旋出部分是正常的交错螺旋采集:TR/TE=4,000ms/85ms,切片。厚度/间隙=4/1mm,17个切片,FOV=24cm,矩阵=256,交错=32,并且NEX=1。用于螺旋采集的接收器带宽为+/-125kHz。在每个实验期间,要求志愿者旋转。和/或以三个逐渐增加的运动水平移动头部(不,轻微的[~¿ 15° ] 和中等 [~¿二十五] 运动 )。
参考文献:1Pruessmann K 等人,MRM 46:638-51,2001;2Rasche V 等人,IEEE TMI 18:385-92,1999。
致谢:这项工作得到了 NIH (1R01EB002771)、斯坦福大学高级 MR 技术中心 (P41RR09784) 和卢卡斯基金会的部分支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAT AKSOY其他文献
MURAT AKSOY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAT AKSOY', 18)}}的其他基金
IMPROVING RIGID HEAD MOTION CORRECTION USING PARALLEL IMAGING
使用并行成像改进刚性头运动校正
- 批准号:
8362897 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
IMPROVING RIGID HEAD MOTION CORRECTION USING PARALLEL IMAGING
使用并行成像改进刚性头运动校正
- 批准号:
8169829 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
IMPROVING RIGID HEAD MOTION CORRECTION USING PARALLEL IMAGING
使用并行成像改进刚性头运动校正
- 批准号:
7955355 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
IMPROVING RIGID HEAD MOTION CORRECTION USING PARALLEL IMAGING
使用并行成像改进刚性头运动校正
- 批准号:
7722869 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
A SPIRAL IN & OUT PULSE SEQUENCE DESIGN FOR RETROSPECTIVE CORRECTION SENSE
螺旋式进入
- 批准号:
7358818 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
A SPIRAL IN & OUT PULSE SEQUENCE DESIGN FOR RETROSPECTIVE CORRECTION SENSE
螺旋式进入
- 批准号:
7358818 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
农户异质性、碳汇生产激励与后退耕时代生态补偿机制研究——以黄土高原退耕区为例
- 批准号:71403214
- 批准年份:2014
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Life Course Constellations of Exposures through Big Data on Place, Time, and Family Factors
通过地点、时间和家庭因素的大数据揭示生命历程中的暴露星座
- 批准号:
10623274 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Refining entry criteria and outcome measures for children with axial disease and spondyloarthritis: preparation for clinical trials
细化中轴病和脊柱关节炎儿童的入组标准和结果测量:临床试验的准备
- 批准号:
9816539 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Refining entry criteria and outcome measures for children with axial disease and spondyloarthritis: preparation for clinical trials
细化中轴病和脊柱关节炎儿童的入组标准和结果测量:临床试验的准备
- 批准号:
10224675 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Leveraging the epigenome of inflammatory bowel disease to gain mechanistic insights into disease pathophysiologyâÂÂ
利用炎症性肠病的表观基因组来了解疾病病理生理学的机制
- 批准号:
10018884 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
A Computerized Neurocognitive Battery for Use in Youth Affected by HIV in Resource-limited Settings
一种计算机化神经认知电池,用于资源有限环境中受艾滋病毒影响的青少年
- 批准号:
9770640 - 财政年份:2018
- 资助金额:
$ 1.73万 - 项目类别: