CRCNS: US-Japan Research Proposal: The Computational Principles of a Neural Face Processing System
CRCNS:美日研究提案:神经人脸处理系统的计算原理
基本信息
- 批准号:10016303
- 负责人:
- 金额:$ 26.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaArtificial IntelligenceBiological ModelsBrainBrain regionCategoriesCellsCharacteristicsClassificationCodeComplexComputer AnalysisComputer ModelsComputersCouplingDataData AnalysesDetectionElectrophysiology (science)FaceFace ProcessingFragile X SyndromeFunctional Magnetic Resonance ImagingGenerationsGoalsHeadHumanImageImpairmentIntelligenceJapanJointsLearningLifeMacacaMasksMethodologyMethodsMissionModelingNeurodevelopmental DisorderNeuronsNeurosciencesNoiseOutcomePatternPrimatesPrincipal Component AnalysisProcessPropertyProsopagnosiaPublic HealthResearchResearch ProposalsShapesSocial PerceptionStimulusStructureSyndromeSystemTestingTheoretical StudiesUnited States National Institutes of HealthValidationVisionVisualVisual PerceptionWilliams SyndromeWorkautism spectrum disorderbasecognitive processcomputational neurosciencecomputer sciencedeep learningdevelopmental prosopagnosiadisabilityexperimental studyinnovationinsightneural circuitneuromechanismneurotechnologynovelnovel strategiesobject recognitionoperationrelating to nervous systemresponsesensory systemsocialstatistical learningsuccesstheories
项目摘要
There is a fundamental gap in our understanding of the computational principles and neural mechanisms by which neural circuits represent complex objects like faces. This conceptual gap constitutes an important problem because, until it is filled, we will not be able to understand face recognition and the reasons for face blindness. The long-term goal is to understand the computational principles and neural mechanisms of face recognition and create a computer face-recognition system based on these principles. The overall objective of this proposal is the determination of the computational principles of local and global face feature coding in the brain's face-processing network. The central hypothesis is that high-level feature tuning in face-selective areas can be understood as the result of the statistical properties of stimulus space and general organizational features of the circuits that process these stimuli. The rationale for this proposal is that completion of the proposed research will provide an understanding, of how neural circuits generate a meaningful representation of complex visual shape, imposing critical constraints on theories of vision. The hypothesis will be tested by pursuing three specific aims, which will determine 1) neural mechanism for facial feature tuning, 2) neural mechanism for categorical face selectivity, and 3) neural mechanisms for transformations of feature tuning. The joint computational and experimental approach will integrate functional magnetic resonance imaging to localize face areas with electrophysiological recordings targeted to these regions and computational analyses of model systems. The approach is innovative through the tight coupling of theoretical principles and experimental validation and by developing novel theoretical and experimental methodologies. The proposed research is significant, because it will unravel principles of neural circuit function that are of general relevance for understanding visual object recognition and multi-node networks. Because the outcome is an advance in understanding circuit mechanisms of social perception, it will identify vulnerabilities of the face-processing system directly relevant to the understanding of face blindness, prosopagnosia, and of altered social perception in syndromes spanning autism spectrum disorders, fragile X, and Williams syndrome.
我们对神经回路表示复杂物体(如人脸)的计算原理和神经机制的理解存在根本性的差距。这种概念上的差距构成了一个重要的问题,因为在它被填补之前,我们将无法理解人脸识别和脸盲症的原因。长期目标是了解人脸识别的计算原理和神经机制,并创建基于这些原理的计算机人脸识别系统。该提案的总体目标是确定大脑面部处理网络中局部和全局面部特征编码的计算原理。中心假设是,面部选择性区域的高级特征调整可以理解为刺激空间的统计特性和处理这些刺激的电路的一般组织特征的结果。该提案的基本原理是,完成所提出的研究将提供对神经回路如何生成复杂视觉形状的有意义的表示的理解,从而对视觉理论施加关键限制。该假设将通过追求三个具体目标进行测试,这将确定 1)用于面部特征调整的神经机制,2)用于分类面部选择性的神经机制,以及 3)用于特征调整转换的神经机制。联合计算和实验方法将整合功能磁共振成像,通过针对这些区域的电生理记录和模型系统的计算分析来定位面部区域。该方法通过理论原理和实验验证的紧密结合以及开发新颖的理论和实验方法而具有创新性。这项研究意义重大,因为它将揭示神经回路功能的原理,这些原理对于理解视觉对象识别和多节点网络具有普遍意义。因为该结果是理解社会感知回路机制的一个进步,它将识别面部处理系统的漏洞,这些漏洞与对脸盲、面容失认症以及自闭症谱系障碍、脆弱性X、和威廉姆斯综合症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Winrich Freiwald其他文献
Winrich Freiwald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Winrich Freiwald', 18)}}的其他基金
Revealing the mechanisms of primate face recognition with synthetic stimulus sets optimized to compare computational models
通过优化比较计算模型的合成刺激集揭示灵长类动物面部识别的机制
- 批准号:
10524626 - 财政年份:2022
- 资助金额:
$ 26.6万 - 项目类别:
Genetic dissection of cortical projection neurons in social brain circuits
社会脑回路中皮质投射神经元的基因解剖
- 批准号:
10452678 - 财政年份:2021
- 资助金额:
$ 26.6万 - 项目类别:
Genetic dissection of cortical projection neurons in social brain circuits
社会脑回路中皮质投射神经元的基因解剖
- 批准号:
10303553 - 财政年份:2021
- 资助金额:
$ 26.6万 - 项目类别:
Uncovering the Functional Organization and Cell Type Composition of Cortical Face Areas
揭示面部皮质区域的功能组织和细胞类型组成
- 批准号:
10227904 - 财政年份:2020
- 资助金额:
$ 26.6万 - 项目类别:
Defining the Neural Circuits of Attention Control: A New Hypothesis
定义注意力控制的神经回路:一个新假设
- 批准号:
10356859 - 财政年份:2020
- 资助金额:
$ 26.6万 - 项目类别:
Defining the Neural Circuits of Attention Control: A New Hypothesis
定义注意力控制的神经回路:一个新假设
- 批准号:
10576288 - 财政年份:2020
- 资助金额:
$ 26.6万 - 项目类别:
Motor Compositionality in the Control of Facial Movements
控制面部运动的运动组合性
- 批准号:
10599085 - 财政年份:2019
- 资助金额:
$ 26.6万 - 项目类别:
Motor Compositionality in the Control of Facial Movements
控制面部运动的运动组合性
- 批准号:
10374011 - 财政年份:2019
- 资助金额:
$ 26.6万 - 项目类别:
CRCNS: US-Japan Research Proposal: The Computational Principles of a Neural Face Processing System
CRCNS:美日研究提案:神经人脸处理系统的计算原理
- 批准号:
9765324 - 财政年份:2018
- 资助金额:
$ 26.6万 - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
Intracranial Investigation of Neural Circuity Underlying Human Mood
人类情绪背后的神经回路的颅内研究
- 批准号:
10660355 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 26.6万 - 项目类别: