An integrative computational interrogation of circuit dysfunction inschizophrenia via neural timescales
通过神经时间尺度对精神分裂症中的回路功能障碍进行综合计算询问
基本信息
- 批准号:10704693
- 负责人:
- 金额:$ 72.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnxiety DisordersArchitectureAutomobile DrivingBiologicalBiological MarkersBiophysicsBrain regionCellsClinicalCognitionCognitiveCognitive deficitsComplementComplexComputer ModelsDataData ReportingData SetDevelopmentDevelopmental ProcessDiagnosisDiseaseDisparateDistalEquilibriumEtiologyExhibitsFoundationsFunctional Magnetic Resonance ImagingFunctional disorderGeneral PopulationGeneticGenotypeHumanHybridsImpairmentIndividualInterneuronsLinkLongevityMeasuresMediatingMediatorMemory impairmentMental disordersMethodsMood DisordersNeurocognitiveNeurocognitive DeficitNeuronsPathway interactionsPatient Self-ReportPatientsPerceptionPerformancePhenotypePopulationProcessPsychosesPublic HealthRecurrenceReportingRestRiskRoleSchizophreniaSelection for TreatmentsSeveritiesShapesShort-Term MemorySpecificityTestingValidationWorkage relatedbehavioral phenotypingbiobankbiophysical modelbrain basedcandidate markercell cortexcell typecognitive functioncomparison controlconnectomeconnectome datacourse developmentearly onsetgenetic risk factorgenetic variantgenome wide association studyhippocampal pyramidal neuronhuman diseaseindexinginterestlarge datasetslarge scale datamultimodal dataneuralnoveloperationphenomenological modelspsychotic symptomsresponserisk variantschizophrenia risksecondary analysissocial stigmatheoriestrait
项目摘要
SUMMARY/ABSTRACT
Schizophrenia is a devastating and burdensome illness the mechanisms of which remain elusive. Contributing
to their elusiveness are a highly complex set of genetic factors, proposed etiological and pathophysiological
pathways, and phenotypic manifestations. To address this complexity, we propose a hybrid method combining
data-driven approaches to large-scale multimodal datasets and theory-driven computational approaches in
order to provide a theoretically constrained framework bridging genetics, development, circuit function,
cognition, and phenomenology of schizophrenia. To that end, and in response to ‘Notice of Special Interest
regarding the Use of Human Connectome Data (HCP) for Secondary Analysis’, we will use data from up to
64,000 individuals, including healthy individuals and patients with schizophrenia and other disorders, from
various HCP-related projects as well as the UK Biobank. We specifically propose measuring intrinsic neural
timescales (INT) from resting-state fMRI data as a theory-driven index of excitation/inhibition (E/I) imbalance in
cortical microcircuits. First, extending our prior work we aim to confirm and further characterize INT alterations
in schizophrenia (widespread trait-like INT reductions and local hierarchy-dependent INT modulations in
relation to psychotic symptoms) and to test their specificity relative to other disorders. Second, we will evaluate
the developmental trajectories of INT and characterize the genetic profile of this fMRI measure and its overlap
with the genetic profile for schizophrenia risk. Third, given the role of E/I ratio in cortical microcircuits in
supporting working-memory computations, we will examine the relationship between INT and working-memory
activation and performance. We will further seek to establish INT as a circuit-level mediator of polygenic risk for
schizophrenia on cognitive deficits. Throughout, we will use well-powered, rigorous, state-of-the-art fMRI and
statistical data-driven methods suitable for large-scale studies and HCP-style fMRI sequences, including cross-
validation and tests of generalizability. Together with a strong theoretical foundation and using biophysical
modeling to complement fMRI analyses, this hybrid—theory- and data-driven—approach will facilitate an
integrated understanding of the circuit-level mechanisms bridging distal genetic-risk factors and proximal
manifestations of schizophrenia. In particular, the combination of cutting-edge cell-type enrichment analyses of
GWAS (which in schizophrenia have suggested converging enrichment in excitatory and inhibitory cortical
cells) and biophysical modeling at the level of cortical microcircuits of interacting excitatory and inhibitory
cellular populations will provide an interpretation of disparate data in terms of convergent cell- and circuit-level
pathways. In doing so, this project will validate a theoretically informative, interpretable, translatable, and
scalable resting-state fMRI measure—INT—that may be relevant across several disorders and, which
additionally owing to its high reliability and ease of acquisition, has high potential as a candidate biomarker.
摘要/摘要
精神分裂症是一种毁灭性和抛光的疾病,其机制仍然难以捉摸。贡献
对它们的兴趣是一组高度复杂的遗传因素,该因素是病因和病理生理学
途径和表型表现。为了解决这种复杂性,我们提出了一种混合方法组合
数据驱动的大规模多模式数据集和理论驱动的计算方法的方法
为了提供理论上约束的框架桥接遗传学,开发,电路函数,
精神分裂症的认知和现象学。为此,以及回应“特殊关注的通知”
有关人类连接数据(HCP)进行次要分析的使用”,我们将使用最多数据
有64,000名来自健康的个体和精神分裂症患者和其他疾病的患者
各种与HCP相关的项目以及英国生物库。我们特别提出测量内在中性的
静止状态fMRI数据的时间表(INT)是理论驱动的兴奋/抑制索引(E/I)不平衡的指标
皮质微电路。首先,扩展我们的先前工作,我们旨在确认并进一步表征INT更改
在精神分裂症中
与精神病症状有关)并与其他疾病相比测试其特异性。第二,我们将评估
INT的发育轨迹和表征该功能磁共振成像测量的遗传特征及其重叠
具有精神分裂症风险的遗传特征。第三,鉴于E/I比在皮质微电路中的作用
支持工作记忆计算,我们将检查INT与工作记忆之间的关系
激活和性能。我们将进一步寻求建立INT作为电路级别的多基因风险的中介
精神分裂症认知缺陷。在整个过程中,我们将使用功率良好,严格,最先进的fMRI和
统计数据驱动的方法适用于大规模研究和HCP风格的fMRI序列,包括交叉
验证和通用性测试。以及强大的理论基础并使用生物物理
建模以补充fMRI分析,这种混合动力(理论和数据驱动)将有助于
对电路级机制的综合理解,桥接识别遗传风险因素和近端
精神分裂症的表现。特别是,尖端的细胞类型富集分析的结合
GWAS(在精神分裂症中,这表明兴奋性和抑制性皮质会融合富集
细胞)和在相互作用兴奋性和抑制性的皮质微电路水平上的生物物理模型
细胞种群将根据收敛的细胞和电路级别提供不同数据的解释
途径。这样,该项目将验证理论上的信息,可解释,可翻译,并且
可扩展的休息状态fMRI测量 - Int-可能与几种疾病有关
此外,由于其高可靠性和易于获取的易用性,作为候选生物标志物具有很高的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Horga其他文献
Guillermo Horga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Horga', 18)}}的其他基金
An integrative computational interrogation of circuit dysfunction inschizophrenia via neural timescales
通过神经时间尺度对精神分裂症中的回路功能障碍进行综合计算询问
- 批准号:
10585148 - 财政年份:2022
- 资助金额:
$ 72.2万 - 项目类别:
Individualized risk prediction in persons at clinical high-risk for psychosis using neuromelanin-sensitive MRI.
使用神经黑色素敏感 MRI 对临床精神病高危人群进行个体化风险预测。
- 批准号:
10166944 - 财政年份:2018
- 资助金额:
$ 72.2万 - 项目类别:
Individualized risk prediction in persons at clinical high-risk for psychosis using neuromelanin-sensitive MRI.
使用神经黑色素敏感 MRI 对临床精神病高危人群进行个体化风险预测。
- 批准号:
10412110 - 财政年份:2018
- 资助金额:
$ 72.2万 - 项目类别:
Deficient Belief Updating as a Convergent Computational Mechanism of Psychosis
信念更新不足作为精神病的收敛计算机制
- 批准号:
10421074 - 财政年份:2018
- 资助金额:
$ 72.2万 - 项目类别:
Deficient Belief Updating as a Convergent Computational Mechanism of Psychosis
信念更新不足作为精神病的收敛计算机制
- 批准号:
9766401 - 财政年份:2018
- 资助金额:
$ 72.2万 - 项目类别:
Neural mechanisms of sensory predictions in schizophrenia with hallucinations
精神分裂症幻觉感觉预测的神经机制
- 批准号:
9262998 - 财政年份:2014
- 资助金额:
$ 72.2万 - 项目类别:
Neural mechanisms of sensory predictions in schizophrenia with hallucinations
精神分裂症幻觉感觉预测的神经机制
- 批准号:
8700122 - 财政年份:2014
- 资助金额:
$ 72.2万 - 项目类别:
相似国自然基金
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
- 批准号:82371513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
电针抑制AdipoR1蛋白磷酸化调控VTA相关环路功能改善焦虑症恐惧记忆障碍的机制研究
- 批准号:82374254
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高尿素通过调控REDD1/mTORC1信号通路促进慢性肾病伴发焦虑症的机制研究
- 批准号:82370739
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
前额叶皮层-丘脑前核环路在焦虑症诱发记忆障碍中的作用机制及电针干预研究
- 批准号:82205278
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
前额叶皮层-丘脑前核环路在焦虑症诱发记忆障碍中的作用机制及电针干预研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 72.2万 - 项目类别:
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
- 批准号:
10724884 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
- 批准号:
10656870 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别:
Structural and Allosteric Mechanisms of mGluR Activation
mGluR 激活的结构和变构机制
- 批准号:
10679316 - 财政年份:2023
- 资助金额:
$ 72.2万 - 项目类别: