Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue
受伤组织中基底角质形成细胞迁移的机械调节
基本信息
- 批准号:10705272
- 负责人:
- 金额:$ 10.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdhesionsArchitectureBehaviorBiophysicsBullaCalcium SignalingCell AdhesionCellsChronicCicatrixComplexCytoskeletonDedicationsDefectDiseaseEnsureEnvironmentEpidermolysis BullosaEpithelial CellsEpitheliumEquilibriumExtracellular MatrixF-ActinFailureFocal AdhesionsFunctional disorderGeneticHomeostasisImageImaging TechniquesInjuryLinkMechanicsMediatingMembraneMinorModelingMolecularMovementNormal CellOpticsPathologyPatientsPhasePhenotypePiezo 1 ion channelPredispositionProcessRegulationRegulatory PathwayResearchRoleSignal TransductionSiteStretchingSwellingSyndromeTalinTestingTherapeuticTimeTissuesTrainingTranslatingTraumaUniversitiesWisconsinZebrafishcell behaviorchronic woundepithelial injuryepithelial woundexperimental studyfluorescence lifetime imaginghealingin vivoin vivo imaginginsightintravital imagingkeratinocyteknock-downmechanical forcemechanical signalmechanotransductionmigrationmodel organismnon-healing woundsnovelpreventrepairedresponseresponse to injuryrestorationsecond harmonic generation imagingskin disordersuccesstoolwoundwound closurewound healing
项目摘要
Project Summary
Epithelial homeostasis is maintained by the balance of mechanical forces acting upon cells across the tissue-
scale. Injury disrupts this mechanical balance and it is unclear how changing homeostatic mechanical signals
impacts cell behavior needed for wound repair. Failure to efficiently repair can lead to fibrotic scarring, chronic
non-healing wounds, and contribute to pathology. Epithelial wound repair relies on the migration of basal
keratinocytes to the site of damage. While it is known that basal keratinocytes are sensitive to mechanical forces,
we lack an understanding of how epithelial injury alters tissue mechanics in vivo and how these wound-induced
biophysical changes subsequently coordinate basal keratinocyte behavior needed for wound repair. This study
aims to address these issues by using larval zebrafish, which are amenable to real-time, intravital imaging due
to their optical transparency. Preliminary live-imaging experiments show that epithelial injury causes rapid basal
keratinocyte migration to the wound site, which is needed for efficient repair. Basal keratinocyte migration is
dependent on mechanical signals, such as membrane tension due to cell swelling, and is associated with a
transient and localized disruption of epithelial tissue architecture at the wound edge. Basal keratinocyte migration
can be inhibited by blocking Arp2/3 complex activation or through Talin1 knockdown, suggesting a potential link
between mechanical signaling and F-actin or focal adhesion complex remodeling in vivo. Further, transiently
weakening cell adhesion to the extracellular matrix alters basal keratinocyte migration, causing poor wound
healing, and resulting in chronic disruption of epithelial architecture. This phenotype mimics pathology associated
with Kindler Syndrome, a skin disease in which patients show wound healing defects in response to injury. These
preliminary observations demonstrate that basal keratinocytes of larval zebrafish respond to mechanical signals
in epithelial tissue after injury by initiating a migratory response that is required for efficient wound healing. They
also suggest that defective basal keratinocyte migration may contribute to wound healing pathology. The
proposed study will investigate how tension sensing by the mechanotransducers Piezo1 and Talin1 regulate
wound-induced basal keratinocyte behavior by F-actin and focal adhesion remodeling, respectively. These
findings will subsequently be translated to investigate a zebrafish model of Kindler Syndrome to determine the
contribution of dysregulated basal keratinocyte behavior to wound healing pathophysiology. To ensure the
success of this project, a tailored training plan has been developed that takes advantage of the excellent research
environment at the University of Wisconsin – Madison. Dedicated training in the use of the zebrafish model
organism for wound healing studies and advanced in vivo imaging techniques for quantifying epithelial tissue
mechanics will aid in the completion of the stated aims. This training will facilitate a successful transition to
research independence.
项目概要
上皮稳态是通过作用于整个组织细胞的机械力的平衡来维持的
损伤会破坏这种机械平衡,目前尚不清楚如何改变稳态机械信号。
影响伤口修复所需的细胞行为,无法有效修复可能导致慢性纤维化疤痕。
不愈合的伤口,并有助于上皮伤口修复依赖于基底细胞的迁移。
虽然已知基底角质形成细胞对机械力敏感,
我们缺乏对上皮损伤如何改变体内组织力学以及这些伤口如何引起的了解
生物物理变化随后导致伤口修复所需的基础协调角质形成细胞行为。
旨在通过使用斑马鱼幼虫来解决这些问题,由于斑马鱼幼虫易于进行实时活体成像
初步的实时成像实验表明,上皮损伤会导致基底细胞快速损伤。
角质形成细胞迁移到伤口部位,这是有效修复所需的。
依赖于机械信号,例如细胞肿胀导致的膜张力,并且与
伤口边缘上皮组织结构的短暂和局部破坏。
可以通过阻断 Arp2/3 复合物激活或通过 Talin1 敲低来抑制,这表明潜在的联系
机械信号传导与 F-肌动蛋白或粘着斑复合体体内重塑之间的关系进一步是短暂的。
细胞与细胞外基质的粘附减弱会改变基底角质形成细胞的迁移,导致伤口不良
这种表型模仿了相关的病理学。
金德勒综合症是一种皮肤病,患者因受伤而表现出伤口愈合缺陷。
初步观察表明斑马鱼幼虫的基底角质形成细胞对机械信号有反应
通过启动有效伤口愈合所需的迁移反应,在损伤后的上皮组织中发挥作用。
还表明有缺陷的基底角质形成细胞迁移可能有助于伤口愈合病理学。
拟议的研究将调查机械传感器 Piezo1 和 Talin1 的张力传感如何调节
分别通过 F-肌动蛋白和粘着斑重塑来抑制伤口诱导的基底角质形成细胞行为。
研究结果随后将被转化为研究金德勒综合症的斑马鱼模型,以确定
基底角质形成细胞行为失调对伤口愈合病理生理学的贡献。
该项目取得成功后,我们利用出色的研究成果制定了量身定制的培训计划
威斯康星大学麦迪逊分校的环境专门培训斑马鱼模型的使用。
用于愈合伤口研究的生物体和用于量化上皮组织的先进体内成像技术
机械师将有助于完成既定目标,该培训将有助于成功过渡到。
独立研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Horn其他文献
Adam Horn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Horn', 18)}}的其他基金
Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue
受伤组织中基底角质形成细胞迁移的机械调节
- 批准号:
10505700 - 财政年份:2022
- 资助金额:
$ 10.81万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 10.81万 - 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
- 批准号:
10830194 - 财政年份:2023
- 资助金额:
$ 10.81万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 10.81万 - 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
- 批准号:
10606952 - 财政年份:2023
- 资助金额:
$ 10.81万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 10.81万 - 项目类别: