Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue

受伤组织中基底角质形成细胞迁移的机械调节

基本信息

  • 批准号:
    10705272
  • 负责人:
  • 金额:
    $ 10.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Epithelial homeostasis is maintained by the balance of mechanical forces acting upon cells across the tissue- scale. Injury disrupts this mechanical balance and it is unclear how changing homeostatic mechanical signals impacts cell behavior needed for wound repair. Failure to efficiently repair can lead to fibrotic scarring, chronic non-healing wounds, and contribute to pathology. Epithelial wound repair relies on the migration of basal keratinocytes to the site of damage. While it is known that basal keratinocytes are sensitive to mechanical forces, we lack an understanding of how epithelial injury alters tissue mechanics in vivo and how these wound-induced biophysical changes subsequently coordinate basal keratinocyte behavior needed for wound repair. This study aims to address these issues by using larval zebrafish, which are amenable to real-time, intravital imaging due to their optical transparency. Preliminary live-imaging experiments show that epithelial injury causes rapid basal keratinocyte migration to the wound site, which is needed for efficient repair. Basal keratinocyte migration is dependent on mechanical signals, such as membrane tension due to cell swelling, and is associated with a transient and localized disruption of epithelial tissue architecture at the wound edge. Basal keratinocyte migration can be inhibited by blocking Arp2/3 complex activation or through Talin1 knockdown, suggesting a potential link between mechanical signaling and F-actin or focal adhesion complex remodeling in vivo. Further, transiently weakening cell adhesion to the extracellular matrix alters basal keratinocyte migration, causing poor wound healing, and resulting in chronic disruption of epithelial architecture. This phenotype mimics pathology associated with Kindler Syndrome, a skin disease in which patients show wound healing defects in response to injury. These preliminary observations demonstrate that basal keratinocytes of larval zebrafish respond to mechanical signals in epithelial tissue after injury by initiating a migratory response that is required for efficient wound healing. They also suggest that defective basal keratinocyte migration may contribute to wound healing pathology. The proposed study will investigate how tension sensing by the mechanotransducers Piezo1 and Talin1 regulate wound-induced basal keratinocyte behavior by F-actin and focal adhesion remodeling, respectively. These findings will subsequently be translated to investigate a zebrafish model of Kindler Syndrome to determine the contribution of dysregulated basal keratinocyte behavior to wound healing pathophysiology. To ensure the success of this project, a tailored training plan has been developed that takes advantage of the excellent research environment at the University of Wisconsin – Madison. Dedicated training in the use of the zebrafish model organism for wound healing studies and advanced in vivo imaging techniques for quantifying epithelial tissue mechanics will aid in the completion of the stated aims. This training will facilitate a successful transition to research independence.
项目摘要 上皮稳态是由作用在整个组织的细胞上的机械力平衡来维持的 规模。伤害破坏了这种机械平衡,目前尚不清楚如何改变稳态机械信号 影响伤口修复所需的细胞行为。无法有效修复会导致纤维化疤痕,慢性 非愈合的伤口,并导致病理学。上皮伤口修复取决于基本的迁移 角质形成细胞到损伤部位。虽然众所周知,基本角质形成细胞对机械力敏感,但 我们对上皮损伤如何改变体内组织力学以及这些伤口诱导的如何改变组织力学 生物物理变化随后协调伤口修复所需的基本角质形成细胞行为。这项研究 旨在通过使用幼虫斑马鱼来解决这些问题,斑马鱼适用于实时的浸润成像 达到其光学透明度。初步现场模仿实验表明上皮损伤会导致快速碱性 角质形成细胞迁移到伤口部位,这是有效修复所需的。基底角质形成细胞迁移是 取决于机械信号,例如由于细胞肿胀而引起的膜张力,并且与A有关 伤口边缘上皮组织结构的瞬时和局部破坏。基底角质形成细胞迁移 可以通过阻止ARP2/3复合激活或通过Talin1敲低来抑制 在体内机械信号传导和F-肌动蛋白或局灶性粘合剂复合物重塑之间。此外,瞬时 弱化细胞对细胞外基质的粘附改变了基本角质形成细胞的迁移,导致伤口不良 康复,并导致上皮结构的长期破坏。这种表型模仿病理学 使用Kindler综合征,一种皮肤疾病,患者对损伤的伤口愈合缺陷表现出。这些 初步观察表明,幼虫斑马鱼的基本角质形成细胞对机械信号做出反应 在受伤后的上皮组织中,通过启动有效增益愈合所需的迁移反应。他们 还表明有缺陷的基本角质形成细胞迁移可能导致伤口愈合病理。 拟议的研究将调查机械转换器压电和talin1的张力如何调节 伤口诱导的F-肌动蛋白和局灶性粘合剂重塑的基本角质形成细胞行为。这些 随后将翻译发现以研究Kindler综合征的斑马鱼模型,以确定 失调的基本角质形成细胞行为对伤口愈合病理生理学的贡献。确保 该项目的成功,已经制定了量身定制的培训计划,以利用出色的研究 威斯康星大学 - 麦迪逊大学的环境。斑马鱼模型的使用专门培训 用于伤口愈合研究的生物和用于量化上皮组织的体内成像技术 力学将有助于完成既定目标。这项培训将促进成功过渡到 研究独立性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Horn其他文献

Adam Horn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Horn', 18)}}的其他基金

Mechanoregulation of Basal Keratinocyte Migration in Wounded Tissue
受伤组织中基底角质形成细胞迁移的机械调节
  • 批准号:
    10505700
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
  • 批准号:
    10830194
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
  • 批准号:
    10883872
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
  • 批准号:
    10606952
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
  • 批准号:
    10735681
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了