Mechanical Forces and the Regulation of Airway Progenitor Cells
机械力和气道祖细胞的调节
基本信息
- 批准号:9788586
- 负责人:
- 金额:$ 33.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAirApicalApoptosisArchitectureBindingBiochemicalBiological ProcessBirthCell Differentiation processChIP-seqChestChromatinConfocal MicroscopyCuesDefectDevelopmentDifferentiation and GrowthDiseaseEmbryoEmbryonic DevelopmentEngineeringEnsureEpithelialEpithelial CellsEpitheliumEquilibriumFetal LungGasesGene ExpressionGenesGenetically Engineered MouseHumanImageInhalationIonsLiquid substanceLungLung diseasesMechanicsMicrobeMicrofluidic MicrochipsMicrofluidicsMolecularMorphogenesisMucous body substanceMusNeuroendocrine CellNeurosecretory SystemsNotch Signaling PathwayOrganOrganogenesisParticulatePathway interactionsPopulationPopulation ControlProcessProductionPromoter RegionsRegulationReporterResearch DesignResolutionRoleSignal PathwaySignal TransductionSpecialized Epithelial CellSpecific qualifier valueStem cellsSurfaceSystemTimeTissuesTreesWaterWorkairway epitheliumcell typechromatin immunoprecipitationconfocal imagingimage reconstructioninnovationinsightlung developmentmechanical forcemigrationnegative affectneuroendocrine differentiationnew therapeutic targetnext generation sequencingnotch proteinnovelorgan growthpathogenphysical processpressurepreventprogenitorpromoterquantitative imagingsingle-cell RNA sequencingtherapeutic target
项目摘要
PROJECT SUMMARY
The branched architecture of the airways of the lungs permit the transfer of approximately six liters of air per
minute between the external surroundings and the alveoli. The airway epithelial tree accomplishes gas
exchange, mucus production, and pathogen clearance and blocks the entry of water, particulates, and
microbes. To accomplish these diverse biological functions, the airway epithelium is comprised of several
distinct cell types that differentiate from common progenitors during embryonic development, the first of which
is the pulmonary neuroendocrine cell. Disrupting the differentiation of the specialized epithelial cell types
negatively affects airway morphogenesis, and abnormally high numbers of pulmonary neuroendocrine cells are
found in several congenital and acquired diseases of the lung. As it differentiates, the epithelium secretes ions
and water across its apical surface, causing fluid to fill the lumen of the airways with a transmural pressure
high enough to inflate the lungs. Defects that cause a decrease in transmural pressure are associated with
both underdeveloped lungs and an increase in pulmonary neuroendocrine cells, but the specific role of
pressure and the molecular signaling downstream of this mechanical cue are unknown. By combining time-
lapse confocal imaging with an innovative microfluidic culture system, we found that transmural pressure
controls the rate of lung development and the expression of markers of neuroendocrine cells. Using next-
generation sequencing analysis, we found that low transmural pressure decreases the expression of targets of
Notch, the master regulator of pulmonary neuroendocrine differentiation, and YAP, a known mechanosensor.
Here, we hypothesize that transmural pressure coordinates the growth and differentiation of the different cell
types within the epithelium by signaling through Notch and YAP. We will combine microfluidic devices with
engineered mice, high-resolution time-lapse spinning disk confocal microscopy, and next-generation
sequencing analysis to define the relative roles of pressure, Notch, and YAP in the regulation of pulmonary
neuroendocrine progenitor fate decisions. In Specific Aim 1, we will use microfluidic chest cavities, engineered
mice, time-lapse imaging, and single cell RNA-sequencing to define physically how transmural pressure
regulates the pulmonary neuroendocrine population in the developing lung. In Specific Aim 2, we will use
microfluidic chest cavities, reporter mice, and chromatin immunoprecipitation approaches to define whether
and how transmural pressure regulates Notch signaling in the embryonic airway epithelium. In Specific Aim 3,
we will determine whether pressure signals through YAP to affect pulmonary neuroendocrine differentiation
and the Notch pathway. This work will define how mechanical signals from the microenvironment are
transmitted to the first progenitor fate decision in the developing airway epithelium. We expect that our results
will reveal novel insights into mechanical control of progenitor differentiation during tissue development and
suggest new therapeutic targets for defects in lung development.
项目摘要
肺气道的分支建筑允许转移大约六升空气
在外部环境和肺泡之间的分钟。气道上皮树完成气体
交换,粘液产生和病原体清除率,并阻止水,微粒和
微生物。为了实现这些多样化的生物学功能,气道上皮由几个
在胚胎发育过程中与常见祖细胞区分开的不同细胞类型,其中第一个
是肺神经内分泌细胞。破坏专业上皮细胞类型的分化
负面影响气道形态发生,异常数量的肺神经内分泌细胞是
在几种先天和肺部的疾病中发现。在区分上,上皮分泌离子
和水面的水,导致流体用透射压力填充气道的腔
足够高以使肺部充气。导致透壁压力降低的缺陷与
肺部欠发育不足和肺神经内分泌细胞的增加,但
压力和该机械提示下游的分子信号传导尚不清楚。通过结合时间 -
与创新的微流体培养系统的失效共聚焦成像,我们发现透壁压力
控制肺发育速率和神经内分泌细胞的标志物的表达。使用下一步
生成测序分析,我们发现低透壁压力降低了目标的表达
Notch,肺神经内分泌分化的主要调节剂,以及已知的机械传感器YAP。
在这里,我们假设透壁压力坐在不同细胞的生长和分化
通过Notch和YAP发出信号,在上皮内的类型。我们将将微流体设备与
工程小鼠,高分辨率的延时旋转磁盘共聚焦显微镜和下一代
测序分析以定义压力,缺口和YAP在肺部调节中的相对作用
神经内分泌祖细胞命运决定。在特定的目标1中,我们将使用微流体胸腔,工程设计
小鼠,延时成像和单细胞RNA顺序,以定义透射压力如何定义
调节发育中肺中的肺神经内分泌群体。在特定目标2中,我们将使用
微流体胸腔,记者小鼠和染色质免疫沉淀方法
以及透壁压力如何调节胚胎气道上皮中的Notch信号传导。在特定的目标3中
我们将确定通过YAP的压力信号是否影响肺神经内分泌分化
和Notch路径。这项工作将定义微环境中的机械信号
传播到发展中的气道上皮的第一个祖细胞命运决定。我们期望我们的结果
将揭示对组织发育和
为肺发育缺陷的新治疗靶标提出了新的治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Celeste M Nelson其他文献
Microstructured Extracellular Matrices in Tissue Engineering and Development This Review Comes from a Themed Issue on Tissue and Cell Engineering Edited Why Introduce Structure into Ecms? Methods for Patterning Ecms Ecms for Tissue Engineering Ecms for the Study of Development
组织工程和发育中的微结构细胞外基质这篇综述来自组织和细胞工程的主题问题编辑为什么将结构引入 Ecms?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Celeste M Nelson;Joe Tien;J L Sherley - 通讯作者:
J L Sherley
Celeste M Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Celeste M Nelson', 18)}}的其他基金
Interplay between mechanical forces and retinoic acid in lung development
肺发育中机械力和视黄酸之间的相互作用
- 批准号:
10545087 - 财政年份:2022
- 资助金额:
$ 33.82万 - 项目类别:
Interplay between mechanical forces and retinoic acid in lung development
肺发育中机械力和视黄酸之间的相互作用
- 批准号:
10367647 - 财政年份:2022
- 资助金额:
$ 33.82万 - 项目类别:
Mechanical Forces and the Regulation of Airway Progenitor Cells
机械力和气道祖细胞的调节
- 批准号:
10665548 - 财政年份:2019
- 资助金额:
$ 33.82万 - 项目类别:
Mechanical Forces and the Regulation of Airway Progenitor Cells
机械力和气道祖细胞的调节
- 批准号:
10429986 - 财政年份:2019
- 资助金额:
$ 33.82万 - 项目类别:
Mechanical Forces and the Regulation of Airway Progenitor Cells
机械力和气道祖细胞的调节
- 批准号:
10198967 - 财政年份:2019
- 资助金额:
$ 33.82万 - 项目类别:
Engineered invasive human breast tumors with integrated capillaries and lymphatics
具有集成毛细血管和淋巴管的工程侵袭性人类乳腺肿瘤
- 批准号:
9912555 - 财政年份:2017
- 资助金额:
$ 33.82万 - 项目类别:
Engineered Invasive Human Breast Tumors with Integrated Capillaries and Lymphatics
具有集成毛细血管和淋巴管的工程侵袭性人类乳腺肿瘤
- 批准号:
9888360 - 财政年份:2017
- 资助金额:
$ 33.82万 - 项目类别:
Mechanical Regulation of Mesenchyme and Mammalian Lung Development
间充质和哺乳动物肺发育的机械调节
- 批准号:
9307949 - 财政年份:2014
- 资助金额:
$ 33.82万 - 项目类别:
相似国自然基金
我国东部土壤源氮氧化物排放机理与空气质量影响模拟评估
- 批准号:42371080
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
织物基空气击穿直流摩擦纳米发电机的高电输出特性研究
- 批准号:52303055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非键合Ir-Ni双金属有机框架材料的可控制备及锂-空气电池性能研究
- 批准号:22309099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于近红外AIE表面活性剂的空气微生物污染监测与消杀一体化技术研究
- 批准号:22302107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向空气污染的室温高性能SnO2基H2S气体传感器研究
- 批准号:62364002
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
An air-liquid interface system to study Bordetella pertussis interactions with respiratory epithelia
研究百日咳博德特氏菌与呼吸道上皮细胞相互作用的气液界面系统
- 批准号:
10665943 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Contributions of the enterocyte brush border to intestinal health and disease
肠上皮细胞刷状缘对肠道健康和疾病的贡献
- 批准号:
10651348 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
COVID-19 airway inflammation is due to Spike inhibition of CFTR signaling
COVID-19 气道炎症是由于 CFTR 信号的 Spike 抑制所致
- 批准号:
10566710 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Measuring and Modeling the Effects of Reticular Lamina Flexibility on Outer Hair Cell Bundle Phase and Cochlear Amplification
测量和模拟网状层灵活性对外毛细胞束相位和耳蜗放大的影响
- 批准号:
10676401 - 财政年份:2023
- 资助金额:
$ 33.82万 - 项目类别:
Regulation of epithelial function using targeted nanowires
使用靶向纳米线调节上皮功能
- 批准号:
10453894 - 财政年份:2022
- 资助金额:
$ 33.82万 - 项目类别: