NIMH MEG Core Facility
NIMH MEG 核心设施
基本信息
- 批准号:7594611
- 负责人:
- 金额:$ 110.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectiveAgreementAmygdaloid structureAnxietyAreaArtsAuditoryBehavioral inhibitionBrainBrain regionCognitionCognitiveCommunitiesComplexComputer softwareConditionCore FacilityData AnalysesData CollectionData SecurityDetectionDevelopmentDiseaseElectrodesElectroencephalographyEmotionalEquipmentEventExperimental DesignsEyeEye MovementsFaceFrequenciesFrightFunctional Magnetic Resonance ImagingGoalsHeadHelmetHippocampus (Brain)HumanIndividualInfusion proceduresInstructionInsula of ReilInvasiveInvestigationKetamineKnowledgeLearningLinguisticsLocalizedMRI ScansMagnetoencephalographyMagnetometriesMajor Depressive DisorderManualsMeasuresMental disordersMethodsMissionModalityModelingMonitorMood DisordersMoodsMotorNational Institute of Mental HealthNutmeg - dietaryPathway interactionsPatternPhotic StimulationPoliciesPositioning AttributePost-Traumatic Stress DisordersProceduresProcessProgram DevelopmentPropertyProtocols documentationRangeReportingResearchResearch DesignResolutionRestRouteRunningScalp structureSensoryShort-Term MemorySignal TransductionSourceStatistical ComputingStimulusStructureSubject HeadingsSuggestionSystemTechniquesTechnologyTestingTimeTissuesTrainingVisualVisual CortexVisual system structureWorkbasebrain pathwaycomputerized data processingcraniumdesignenvironmental changeexperiencefollow-uphuman WNT2 proteinindependent component analysisinterestmagnetic fieldneuroimagingneuromechanismnovelprogramsrelating to nervous systemresearch studyresponsesensorsomatosensorysoundsuccesssuperconducting quantum interference devicetooluser-friendlyvirtual
项目摘要
At present we have about 40 user accounts representing numerous NIMH, NINDS and NIDCD protocols. There is continual interest from additional groups that are working on protocols and planning studies.
The MEG Core staff has been working interactively with these users in terms of study design, task programming development, acquisition protocols, and signal processing and data analysis. Procedures have been setup for data security, transfer and storage. A substantial Policy and Procedures Manual has been established. We have also worked with the Scientific and Statistical Computing Core to enable transfer of CTF MEG files to AFNI and developed tools for group statistical analysis.
Technical and scientific results continue to be excellent. Signal analysis development includes event-related SAM (synthetic aperture magnetometry) and 275 channel ICA (independent component analysis). Development of time-frequency analysis methods has included Stockwell and wavelet transforms as well as multi-taper techniques. Of particular interest is coherence analysis of virtual channels as a method to investigate interacting brain regions. Staff are working with other MEG groups to integrate several signal processing packages including FieldTrip, NUTMEG and BrainStorm. The goal is to have a unified tool package with a user-friendly interface available to the user community. The SAM software has been successfully run on the Biowulf Cluster allowing for tremendous increase in computing power. A subject eye movement system has been integrated with task presentation software allowing for interactive monitoring of eye position during visual stimulation.
Scientific results follow up from initial successes of localization of amygdala activation with an emotional face task, and a visual system modulation study (Jeff Duyn reports that the MEG visually activated signal has 10 times the SNR compared to BOLD). For a working memory task MEG activation patterns for beta band have shown exceptional agreement with BOLD results in the same subject group. The user community has been very productive
Qian Lou and James Blair in a study examining the neural dynamics of facial threat processing have been able to utilize the fine temporal resolution of MEG to learn that there are brian related responses in the amygdale even earlier than in the visual cortex. This supports the suggestion of quick processing route in the brain specific to fear expressions. Understanding these brain mechanisms will be important to further study in mood and affective disorders.
Brian Cornwell, Christion Grillion and colleagues have examined how individuals because sensitized to novel stimuli when there are environmental changes that cause anxiety. Using MEG they were able to outline the pathways where brain responses were enhanced to sounds when under threat compared to no threat. These areas included amygdale and insula. Knowledge of these pathways and how they become sensitized may be important for understanding sensitization in disorders such as PTSD.
Garolera, Goldberg and colleagues have also examined amygdale activity with MEG; in this case, during a linguistic affective priming task using positive and negative words. A time dependant increase in amygdale activity was seen in response to negative words. They will follow up to explore mechanisms implicated in emotional processing.
Studying how the brain organizes itself into functional networks is key to understanding normal human cognition as well as when it becomes disordered in mental illness. To this end Bassett, Meyer-Lindenberg and co-workers used the spatial and temporal ability of MEG to study how the brain changes configuration during a motor task compared to when at rest. They found that functional networks were characterized by small-world properties indicating a mix or both local connections and long range connections. These type of investigations may aid in understanding how brain networks change in dysfunctional states.
On going studies include examining hippocampal function in pateients with major depression as well as other brain changes when treated with ketamine. These studies are of particular interest to possibly elucidate the mechanism of the anti-depressant action of ketamine infusion. Rich, Leibenluft and Pine are using MEG to study the neural mechanisms of behavioral inhibition. These are just a few examples of how MEG is augmenting the neuroimaging research program.
.
目前,我们有大约40个用户帐户代表许多NIMH,NINDS和NIDCD协议。其他正在从事协议和计划研究的小组的兴趣不断。
MEG核心人员一直在研究设计,任务编程开发,获取协议以及信号处理和数据分析方面与这些用户进行互动合作。已经为数据安全,传输和存储设置了过程。已经建立了实质性的政策和程序手册。我们还与科学和统计计算核心合作,使CTF MEG文件可以转移到AFNI,并开发了用于组统计分析的工具。
技术和科学成果仍然很棒。信号分析开发包括事件相关的SAM(合成孔径磁力测定法)和275通道ICA(独立的组件分析)。时频分析方法的开发包括Stockwell和小波变换以及多型技术。特别感兴趣的是对虚拟通道的连贯分析作为研究相互作用大脑区域的一种方法。 员工正在与其他MEG组合作,集成了几个信号处理包,包括现场渡轮,肉豆蔻和头脑风暴。目标是拥有一个统一的工具包,其用户社区可用的用户友好界面。 SAM软件已成功地在Biowulf群集上运行,从而允许计算能力的大幅增加。受试者眼动系统已与任务演示软件集成在一起,以便在视觉刺激过程中进行互动监测眼睛位置。
科学的结果从最初的杏仁核激活局部局部实现的成功进行了跟进,以及一项视觉系统调制研究(Jeff Duyn报告,MEG在视觉上激活的信号与BOLD相比具有10倍SNR的倍)。对于工作记忆任务,beta频段的MEG激活模式已显示出与同一主题组的大胆结果的非凡一致性。用户社区非常有生产力
Qian Lou和James Blair在研究面部威胁处理的神经动态的研究中,已经能够利用MEG的精细时间分辨率,以了解杏仁核中Brian相关的反应甚至比视觉皮层早。这支持了特定于恐惧表达的大脑中快速处理路线的建议。了解这些大脑机制对于进一步研究情绪和情感障碍将很重要。
克里斯蒂安·格里恩(Christion Grillion)和同事布莱恩·康威尔(Brian Cornwell)研究了个人如何在引起焦虑的环境变化时对新型刺激的敏感。使用MEG,他们能够概述与没有威胁相比,在受到威胁时对声音增强的大脑反应的途径。这些区域包括杏仁核和岛状。了解这些途径及其敏感的知识对于理解PTSD等疾病的敏感性可能很重要。
Garolera,Goldberg及其同事还研究了Meg的Amygdale活动。在这种情况下,在语言情感启动任务中,使用正面和否定词。响应否定词,观察到杏仁核活性的时间依赖性增加。他们将跟进以探索与情感处理有关的机制。
研究大脑如何将自己组织到功能网络中是了解正常人类认知以及在精神疾病中变得无序的关键。为此,巴塞特(Bassett),迈耶·林登伯格(Meyer-Lindenberg)和同事使用梅格(Meg)的空间和时间能力来研究与休息时间相比,在运动任务期间大脑在运动任务期间的构型如何变化。他们发现功能网络的特征是小世界属性,指示混合或局部连接和远距离连接。这些类型的研究可能有助于了解大脑网络如何变化功能失调状态。
在进行的研究中包括检查严重抑郁症以及用氯胺酮治疗的其他大脑变化的海马功能。这些研究尤其令人感兴趣,可能阐明氯胺酮输注抗抑郁作用的机制。 Rich,Leibenluft和Pine正在使用MEG研究行为抑制的神经机制。这些只是MEG如何增强神经影像学研究计划的一些例子。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Coppola其他文献
Richard Coppola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Coppola', 18)}}的其他基金
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
- 批准号:
8342165 - 财政年份:
- 资助金额:
$ 110.82万 - 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
- 批准号:
8939994 - 财政年份:
- 资助金额:
$ 110.82万 - 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
- 批准号:
7735209 - 财政年份:
- 资助金额:
$ 110.82万 - 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
- 批准号:
8158141 - 财政年份:
- 资助金额:
$ 110.82万 - 项目类别:
Integrating EEG/MEG and fMRI: 99-M-0172
整合 EEG/MEG 和 fMRI:99-M-0172
- 批准号:
8745736 - 财政年份:
- 资助金额:
$ 110.82万 - 项目类别:
相似国自然基金
基于个性化音乐的闭环情感脑机接口及其在意识障碍中的应用研究
- 批准号:82302339
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
tDCS缓解老年高孤独感的神经情感机制与个体化效应预测
- 批准号:82371558
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
地方感与虚拟地方感的关系研究:情感拓扑论的原理、机制与方法
- 批准号:42371234
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
教室课堂中基于多视觉分析的情感投入检测研究
- 批准号:62307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CXCL10/CXCR3通路介导的神经炎症反应在狼疮脑病认知情感功能障碍中的作用机制研究
- 批准号:82301533
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-modal assessment of GABA function in psychosis
精神病中 GABA 功能的多模式评估
- 批准号:
10430003 - 财政年份:2019
- 资助金额:
$ 110.82万 - 项目类别:
Multi-modal assessment of GABA function in psychosis
精神病中 GABA 功能的多模式评估
- 批准号:
10643979 - 财政年份:2019
- 资助金额:
$ 110.82万 - 项目类别:
Multi-modal assessment of GABA function in psychosis
精神病中 GABA 功能的多模式评估
- 批准号:
10196982 - 财政年份:2019
- 资助金额:
$ 110.82万 - 项目类别:
Multi-modal assessment of GABA function in psychosis
精神病中 GABA 功能的多模式评估
- 批准号:
10001023 - 财政年份:2019
- 资助金额:
$ 110.82万 - 项目类别:
PQA - 3: Neural predictors of receptivity to health communication and behavior ch
PQA - 3:健康沟通和行为接受度的神经预测因子
- 批准号:
8590270 - 财政年份:2013
- 资助金额:
$ 110.82万 - 项目类别: