Gut-brain endocannabinoid signaling in feeding behavior and obesity
进食行为和肥胖中的肠脑内源性大麻素信号传导
基本信息
- 批准号:10375448
- 负责人:
- 金额:$ 34.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgonistAmericanAmerican Medical AssociationAppetite StimulantsBehavioralBiological AssayBody Weight decreasedBrainCB1 knockoutCNR1 geneCaloriesCannabinoidsCannabisCell LineCellsCholecystokininCholecystokinin ReceptorChronicConsumptionDataDevelopmentDietDietary ComponentDietary FatsDietary InterventionDiseaseEatingEndocannabinoidsEnteroendocrine CellEnzymesExposure toFastingFat emulsionFatty AcidsFatty acid glycerol estersFeeding behaviorsFood EnergyFunctional disorderGastrointestinal tract structureHumanHyperphagiaIn VitroIntakeIntestinal Neuroendocrine NeoplasmIntestinesKnockout MiceLife ExpectancyMapsMediator of activation proteinMetabolicMetabolic DiseasesMetabolic PathwayMolecularMusNutrientObese MiceObesityOralPathway interactionsPatternPeptidesPeripheralPharmacologyPhysiologyPlayProcessReportingRodentRoleSatiationSeminalSignal PathwaySignal TransductionSignaling MoleculeSmall IntestinesSucroseTestingThinnessWorkantagonistbasebehavioral outcomedetection of nutrientdiet-induced obesitydietingendocannabinoid signalingendogenous cannabinoid systemenergy balancegut-brain axisin vivoinhibitorintestinal epitheliumlipidomicsmouse modelnovelnovel therapeutic interventionobesity treatmentrecidivismresponsesugartoolwestern diet
项目摘要
PROJECT SUMMARY/ABSTRACT
Food intake and energy balance are controlled by a dynamic interplay of gut-brain signaling pathways;
however, the molecular underpinnings in these processes and their dysregulation in obesity remain poorly
understood. Recent work from the DiPatrizio lab suggests that our bodies’ cannabis-like signaling molecules,
the endocannabinoids (eCBs), are critical mediators of gut-brain signaling important for food intake, and are
upregulated in the gut in diet-induced obesity (DIO). These seminal studies suggest that eCB signaling in the
gut is an orexigenic signal that is activated under several behavioral and metabolic conditions, and may become
dysregulated in obesity. The mechanism(s) of gut-brain eCB control of food intake and reorganization of these
pathways in DIO is unknown. Preliminary data, however, suggests that in DIO, increased eCB signaling in the
intestinal epithelium inhibits nutrient-induced release of satiation peptides, which increases meal size and delays
satiation. We propose the central hypothesis that the eCB system in the gut plays a critical role in nutrient
sensing and gut-brain satiation signaling, which is remodeled after chronic exposure to high-energy nutrients
and contributes to overeating in DIO. We propose the following specific aims to test this hypothesis: SA1. To
determine if CB1Rs in the gut control gut-brain satiation signaling. Based on preliminary data, we
hypothesize that CB1Rs in the intestinal epithelium control nutrient sensing and gut-brain satiation signaling that
become dysregulated in DIO. To test this hypothesis, we will examine the role for CB1Rs in controlling feeding
behavior by evaluating nutrient-induced release of satiation peptides in vivo and in vitro using our first-of-kind
mouse model that conditionally lacks CB1Rs in intestinal epithelium in combination with peripherally-restricted
CB1R antagonists, and enteroendocrine cell lines. This aim will provide evidence of a previously unidentified
control mechanism of nutrient-induced gut-brain satiation signaling. SA2. To determine the mechanism of eCB
system remodeling in DIO, and impact of dietary intervention on these pathways. The molecular
underpinnings of eCB system remodeling in DIO, specific dietary components that drive this process, as well as
the impact of dietary intervention on these pathways and behavioral outcomes are unknown. We hypothesize
that chronic exposure to WD leads to remodeling of the eCB system in the gut, which promotes overeating and
DIO. To test this hypothesis, we will use our intestinal epithelial CB1R-null mice in combination with targeted
lipidomics and advanced UPLC/MS/MS-based assays of eCB system function to identify specific dietary
components that drive heightened eCB system activity and overeating, and the mechanism of remodeling that
occurs in DIO. Furthermore, weight loss following dieting is all-too-often met with high levels of recidivism to
overeating and obesity; thus, we will assess the ability for low-calorie dietary intervention to normalize gut-brain
eCB signaling in DIO.
项目摘要/摘要
食物的摄入量和能量平衡受肠道信号通路的动态解释控制;
霍弗,这些过程中的分子基础和观察中的失调保持较差
理解。
内源性大麻素(ECB)是肠道脑信号的关键介体,对食物摄入很重要,并且是
饮食诱导的观察力中的肠道上调(DIO)。
肠道是一种在严重性和代谢条件下激活的神经性信号,可能会变成
肥胖症的不足。
但是,DIO中的途径未知。
肠上皮抑制营养和饱食肽的释放,这会增加膳食大小和延迟
我们提出了一个中心假设,即肠道中的欧洲央行系统在营养中起着至关重要的作用
传感和肠道饱腹信号传导,在长期暴露于高能营养素之后进行了重塑
并有助于Dio中的暴饮暴食
确定肠道控制肠道中的CB1R是否基于预后数据。
假设肠上皮控制中的CB1RS营养感应和肠道 - 脑 - 脑SAT-脑脑脑信号传导
在DIO中变得失调以检验该假设,我们将检查CB1RS的作用
通过评估养分和在体外释放的营养和体外释放的行为
有条件地缺乏肠上皮中CB1R的鼠标与周围限制
CB1R拮抗剂和肠道分泌细胞系将提供以前未知的证据
养分诱导的肠道信号的机制。
系统重塑DIO,以及饮食中的干预对这些途径的影响
欧洲央行系统重塑的基础dio,驱动此过程的特定饮食成分以及
我们假设饮食间隔对途径和行为结果的影响
长期暴露于WD会导致肠道中欧洲央行系统的重塑,这促进了Overying和
dio。要检验此假设
脂肪组学和高级UPLC/MS/MS基于欧洲央行系统功能的测定,以识别特定的饮食
驱动欧洲央行系统Activim和暴饮暴食的组件以及重塑的机制
发生在Dio中。
暴饮暴食和肥胖;因此,我们将评估低热量饮食干预的能力
DIO中的欧洲央行信号传导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Vincent DiPatrizio其他文献
Nicholas Vincent DiPatrizio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Vincent DiPatrizio', 18)}}的其他基金
Gut-brain endocannabinoid signaling in feeding behavior and obesity
进食行为和肥胖中的肠脑内源性大麻素信号传导
- 批准号:
10581577 - 财政年份:2019
- 资助金额:
$ 34.05万 - 项目类别:
Endocannabinoid regulation of host-helminth interaction
内源性大麻素对宿主与蠕虫相互作用的调节
- 批准号:
9797211 - 财政年份:2018
- 资助金额:
$ 34.05万 - 项目类别:
A Role for Endocannabinoids in the Control of Dietary Fat Intake
内源性大麻素在控制膳食脂肪摄入中的作用
- 批准号:
8940324 - 财政年份:2013
- 资助金额:
$ 34.05万 - 项目类别:
A Role for Endocannabinoids in the Control of Dietary Fat Intake
内源性大麻素在控制膳食脂肪摄入中的作用
- 批准号:
9111460 - 财政年份:2013
- 资助金额:
$ 34.05万 - 项目类别:
A Role for Endocannabinoids in the Control of Dietary Fat Intake
内源性大麻素在控制膳食脂肪摄入中的作用
- 批准号:
8654327 - 财政年份:2013
- 资助金额:
$ 34.05万 - 项目类别:
A Role for Endocannabinoids in the Control of Dietary Fat Intake
内源性大麻素在控制膳食脂肪摄入中的作用
- 批准号:
8509542 - 财政年份:2013
- 资助金额:
$ 34.05万 - 项目类别:
相似国自然基金
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
- 批准号:82000963
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
- 批准号:81900389
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
- 批准号:81803644
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
cAMP信号激动剂对恶性胶质瘤血管新生和血管正常化的影响及机制研究
- 批准号:81803568
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Compartmentalized signaling and crosstalk in airway myocytes
气道肌细胞中的区室化信号传导和串扰
- 批准号:
10718208 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Investigating non-canonical mechanisms of endogenous opioids on motivation in dorsal midbrain
研究内源性阿片类药物对背侧中脑动机的非典型机制
- 批准号:
10624699 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
- 批准号:
10742453 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别: