Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
基本信息
- 批准号:10374914
- 负责人:
- 金额:$ 55.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcousticsAgeAirAlgorithmsAngiographyAnisotropyAreaBackBenchmarkingBiomechanicsBody mass indexBreastCicatrixClinicClinicalClinical ProtocolsCollagenCorneaCosmeticsCoupledDataDermatologyDonor personElasticityEnsureEnvironmentEstheticsFaceFeedbackForearmFutureGenderGoalsHumanImageImaging DeviceInflammationMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMedicalMethodsModelingModulusMonitorNeckOperative Surgical ProceduresOpticsOrgan TransplantationOutcomePatientsPersonsPhasePlastic Surgical ProceduresPopulationPostoperative ProceduresProceduresProcessPropertyProtocols documentationRadiationRadiology SpecialtyReconstructive Surgical ProceduresRecoveryResolutionRobotRoboticsSamplingSiteSkinSkin graftStructureSubcutaneous TissueSurgical OncologySystemTechniquesTestingTherapeuticThickTimeTissue DonorsTissue GraftsTissuesTransplantationbasebiomechanical modelclinical applicationclinical efficacyclinical translationelastographyexperimental studyfootgraft healinghealinghealthy volunteerhuman subjectin vivoin vivo imaging systemin vivo monitoringinnovationinstrumentreconstructiontoolultrasound
项目摘要
Abstract
The goal of this project is a develop a non-contact, non-invasive clinical tool to characterize, image and
monitor skin grafting procedures using quantitative, volumetric, sub-mm resolved maps of Young's
modulus based on Optical Coherence Elastography (OCE).
Factors related to or directly defined by skin's elastic properties (such as contractions and shearing forces) are
among the most common complications of full thickness skin graft (FTSG) procedures. In addition, the recipient
site functions best when its elastic properties are matched by transplanted donor tissue. With tens of millions
of aesthetic procedures performed every year in the USA alone, surgical cosmesis is clearly critical, especially
when procedures are performed on the face, neck or breast. Currently there are no clinical tools, or even
methods, that can quantitatively map skin's Young's modulus and anisotropy in vivo. We propose to map these
parameters in skin using a non-contact, fully non-invasive method, with sub-mm spatial resolution and
nearly in real time. We hypothesize that quantifying skin elasticity in vivo will enable significant innovation within
all areas of plastic surgery, burn surgery, oncologic surgery, and dermatology that modify a patient's tissue
quality and elastic properties through medical, radiologic, or surgical intervention.
To achieve our objective, we propose a new non-contact OCE method. Our approach is based on: (i) acoustic
micro-tapping (AµT) using ultrasound propagating in air to launch mechanical waves in soft media with the
highest efficiency and best resolution among all non-contact wave-excitation methods, (ii) state-of-the-art real-
time 4-D PhS-OCT imaging to track wave propagation, and (iii) reconstruction of volumetric maps of Young's
modulus and anisotropy using imaged wavefields in skin analyzed with a transversally isotropic model.
SA1 will focus on refining previously developed analytic and numerical models of mechanical wave
propagation in skin considering its layered anisotropic structure, and developing algorithms to reconstruct
skin's moduli. Then, SA2 will develop a robotized AµT-OCE imaging system for in vivo skin measurements in
a clinical environment. We will perform routine measurements of skin elastic moduli in vivo on healthy
volunteers to understand normal variability in skin elastic properties in a representative population of normal
human subjects to help define the level of expected improvements possible in matching skin elastic properties
in FTSG procedures. SA3 will focus on in vivo monitoring changes in grafted skin elastic properties during
grafting procedures in the clinic, including pre-operative mapping of skin's elastic properties in donor and
recipient sites and mapping longitudinal changes in fundamental structural and elastic parameters of FTSGs
and surrounding tissue over the reconstruction process. If successful, this project can be the starting point for
multiple continuation projects testing whether new methods and clinical protocols can be developed using
information from OCE to help select the best donor tissue for grafting and guide post-surgery procedures.
抽象的
该项目的目标是开发一种非接触式、非侵入性临床工具来表征、成像和
使用定量、体积、亚毫米分辨率的杨氏图监测植皮手术
基于光学相干弹性成像(OCE)的模量。
与皮肤弹性特性相关或直接由其定义的因素(例如收缩力和剪切力)是
这是全层皮肤移植 (FTSG) 手术最常见的并发症之一。
当其弹性特性与移植的供体组织相匹配时,该部位的功能最佳。
仅在美国每年进行的美容手术中,手术美容显然至关重要,尤其是
目前还没有临床工具,甚至没有在面部、颈部或乳房上进行手术的情况。
方法,可以定量绘制体内皮肤的杨氏模量和各向异性。
使用非接触式、完全非侵入性方法,具有亚毫米空间分辨率和
我们认为,量化体内皮肤弹性将能够实现重大创新。
整形外科、烧伤外科、肿瘤外科和皮肤科中修改患者组织的所有领域
通过医疗、放射学或外科手术干预获得质量和弹性。
为了实现我们的目标,我们提出了一种新的非接触式 OCE 方法。我们的方法基于:(i) 声学。
微攻(AμT)利用空气中传播的超声波在软介质中发射机械波
所有非接触式波激励方法中最高的效率和最佳分辨率,(ii)最先进的实时
时间 4-D PhS-OCT 成像来跟踪波传播,以及 (iii) 重建杨氏体积图
使用横向各向同性模型分析皮肤中的成像波场来分析模量和各向异性。
SA1将专注于完善先前开发的机械波分析和数值模型
考虑其分层各向异性结构在皮肤中的传播,并开发重建算法
然后,SA2 将开发一种机器人化 AμT-OCE 成像系统,用于体内皮肤测量。
我们将对健康人进行体内皮肤弹性模量的常规测量。
志愿者了解代表性正常人群皮肤弹性特性的正常变异性
人类受试者帮助确定匹配皮肤弹性特性方面可能的预期改进水平
在 FTSG 程序中,SA3 将重点关注移植皮肤弹性特性的体内变化。
临床移植程序,包括术前绘制供体和移植者皮肤的弹性特性
受体位点并绘制 FTSG 基本结构和弹性参数的纵向变化
如果成功,该项目可以成为重建过程的起点。
多个延续项目测试是否可以使用以下方法开发新方法和临床方案
来自 OCE 的信息可帮助选择最佳的移植供体组织并指导术后程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IVAN PELIVANOV其他文献
IVAN PELIVANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IVAN PELIVANOV', 18)}}的其他基金
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10613941 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10204507 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10664961 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10613941 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
Dynamic OCE with acoustic micro-tapping for in vivo monitoring of skin graft surgeries
具有声学微敲击功能的动态 OCE,用于皮肤移植手术的体内监测
- 批准号:
10204507 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10455412 - 财政年份:2021
- 资助金额:
$ 55.92万 - 项目类别:
4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents
4D 经颅声电成像用于神经元电流的高分辨率功能映射
- 批准号:
10266774 - 财政年份:2020
- 资助金额:
$ 55.92万 - 项目类别: