The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
基本信息
- 批准号:9791162
- 负责人:
- 金额:$ 252.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAtlasesAutomobile DrivingBiological AssayBiological MarkersBiopsyBostonBreast MelanomaCDK4 geneCancer CenterCell LineCellsClinicClinicalClinical DataCoculture TechniquesCohort AnalysisCollectionColon CarcinomaComplexComputational BiologyDataData ScienceEcosystemExcisionExperimental DesignsGenomicsGeographyHistologicHumanImmuneImmunologyImmunotherapyInstitutionLarge Intestine CarcinomaLeadLeadershipMalignant - descriptorMalignant NeoplasmsMapsMeasuresMetastatic MelanomaMicrosatellite RepeatsModalityNon-MalignantOrganoidsPatient-Focused OutcomesPatientsPharmaceutical PreparationsProteinsRNAResearchResearch DesignResistanceResolutionRiskSamplingTestingTissuesTreatment EfficacyTreatment outcomeValidationanticancer researchbasecancer therapycell communitycell typeexperienceexperimental studygenomic dataimmune checkpoint blockadeimproved outcomeinnovationmalignant breast neoplasmmemberneoplastic cellnext generationnovelpatient stratificationprecision oncologypredictive markerpredictive modelingprospectiveresponsesingle-cell RNA sequencingspatial integrationtherapeutic targettherapy resistanttreatment responsetreatment strategytumortumor progression
项目摘要
Most patients who die from cancer do so because their cancer is resistant to available therapies, either
intrinsically, or as it evolves in response to treatment. However, the fundamental mechanisms driving resistance
remain largely unknown. Tumors are comprised of a complex multicellular ecosystem of malignant and non-
malignant cells, and changes in their composition, states, spatial organization and interactions are central to
therapeutic resistance. Thus, there is an enormous need to chart an atlas of a tumor's cells, their spatial
organization and interactions as those change dynamically in resistance to therapy. Technological
breakthroughs in spatial and single-cell genomics, including many innovations by our team, now put an atlas
within reach, but harnessing this remarkable opportunity, requires collection of multiple spatial and single cell
genomics data in clinical samples; novel study design strategies; new experimental and computational strategies
to integrate across cellular and spatial data; algorithms to construct tumor atlases that capture the resistant state;
and showing how to use an atlas to formulate and test new predictive models of resistance. The Boston Human
Tumor Atlas Network Research Center (HTA-RC) will address each of these challenges by creating three
comprehensive atlases of the cellular geography of human cancer to understand how changes in the
tumor ecosystem lead to therapeutic resistance in: (1) Primary and acquired resistance to CDK4/6 inhibition
in breast cancer; (2) Primary and acquired resistance to immune checkpoint blockade in metastatic melanoma;
and (3) Primary resistance to immunotherapy in microsatellite stable (MSS) colorectal carcinoma (CRC)
compared with microsatellite instable (MSI) CRC. All three tumors types tackle an unmet clinical need; have an
approximately equal rate of resistance and response to allow comparisons between states; and harness
significant clinical experience and build on substantial preliminary results at our center. To construct the atlases,
we will collect at least 100 biospecimens per year from resections and biopsies of the three tumor types and
analyze them with histopathological data, high-resolution spatial multiplex RNA and protein data, single-
cell genomics data, and temporal clinical data. Our algorithms will recover key features of each data modality,
and integrate them into a single atlas to determine what predicts and underlies resistance. We build on a
well-established interdisciplinary team in two major cancer centers (DFCI, MGH) and four research
institutions (Broad, Harvard, Stanford, Princeton). Our leadership (Haining, Regev) and Units comprise of
foremost experts and pioneers in clinical genomics (Biospecimens; Johnson, Wagle), spatial and single cell
genomics (Shalek, Rozenblatt-Rosen, Nolan, Zhuang), and computational biology and data science (Regev,
Van Allen, Engelhardt). Our atlases will allow identification of predictive biomarkers of resistance in the tumor
ecosystem, and therapeutic target discovery, targeting diverse facets of the complex tumor ecosystem.
大多数死于癌症的患者都是因为他们的癌症对现有疗法有抵抗力
本质上,或者随着治疗的反应而演变。然而,驱动耐药性的基本机制
仍然很大程度上不为人所知。肿瘤由恶性和非复杂的多细胞生态系统组成
恶性细胞及其组成、状态、空间组织和相互作用的变化是恶性细胞的核心
治疗抵抗。因此,非常需要绘制肿瘤细胞及其空间分布图谱。
组织和相互作用随着对治疗的抵抗而动态变化。技术性
空间和单细胞基因组学的突破,包括我们团队的许多创新,现在将一个图谱
触手可及,但要利用这个非凡的机会,需要收集多个空间和单个细胞
临床样本中的基因组学数据;新颖的研究设计策略;新的实验和计算策略
整合细胞和空间数据;构建捕获耐药状态的肿瘤图谱的算法;
并展示如何使用图谱来制定和测试新的耐药预测模型。波士顿人
肿瘤图谱网络研究中心 (HTA-RC) 将通过创建三个
人类癌症细胞地理学的综合图谱,以了解
肿瘤生态系统导致以下方面的治疗耐药:(1)对 CDK4/6 抑制的原发性和获得性耐药
乳腺癌; (2) 转移性黑色素瘤对免疫检查点阻断的原发性和获得性耐药;
(3) 微卫星稳定 (MSS) 结直肠癌 (CRC) 对免疫治疗的原发性耐药
与微卫星不稳定 (MSI) CRC 相比。所有三种肿瘤类型都解决了未满足的临床需求;有一个
电阻率和响应率大致相等,以便在状态之间进行比较;和马具
丰富的临床经验,并以我们中心的大量初步结果为基础。为了构建地图集,
我们每年将从三种肿瘤类型的切除和活检中收集至少 100 个生物样本
使用组织病理学数据、高分辨率空间多重 RNA 和蛋白质数据、单
细胞基因组学数据和时间临床数据。我们的算法将恢复每种数据模态的关键特征,
并将它们整合到一个地图集中,以确定阻力的预测和基础。我们建立在
两个主要癌症中心(DFCI、MGH)和四个研究机构拥有完善的跨学科团队
机构(博德大学、哈佛大学、斯坦福大学、普林斯顿大学)。我们的领导层(海宁、雷格夫)和单位包括
临床基因组学(生物样本;Johnson、Wagle)、空间和单细胞领域最重要的专家和先驱
基因组学(Shalek、Rozenblatt-Rosen、Nolan、Zhang)以及计算生物学和数据科学(Regev、
范艾伦,恩格尔哈特)。我们的图谱将能够识别肿瘤耐药性的预测生物标志物
生态系统和治疗靶点发现,针对复杂肿瘤生态系统的各个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE E. JOHNSON其他文献
BRUCE E. JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE E. JOHNSON', 18)}}的其他基金
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
- 批准号:
10259732 - 财政年份:2018
- 资助金额:
$ 252.48万 - 项目类别:
Clinical implementation of single cell tumor transcriptome analysis
单细胞肿瘤转录组分析的临床实施
- 批准号:
9272844 - 财政年份:2016
- 资助金额:
$ 252.48万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7216360 - 财政年份:2005
- 资助金额:
$ 252.48万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8507610 - 财政年份:2005
- 资助金额:
$ 252.48万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
6906935 - 财政年份:2005
- 资助金额:
$ 252.48万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8852562 - 财政年份:2005
- 资助金额:
$ 252.48万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7590311 - 财政年份:2005
- 资助金额:
$ 252.48万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 252.48万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 252.48万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 252.48万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 252.48万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 252.48万 - 项目类别: